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The clustered regression model Preliminary: model and clustered structure

Preliminary

Model: y= Xβ+u, with E[u|X]= 0, Var[u]= E[uu′]=Ω

OLS estimator:
β̂= (X′X)−1X′y=β+ (X′X)−1X′u

The variance of β̂:
Var[β̂]= (X′X)−1X′ΩX(X′X)−1

Non-clustered assumption:
Spherical disturbance: Ω=σ2I, then Var[β̂]=σ2(X′X)−1. The consistent estimator
is

V̂ar[β̂]= s2(X′X)−1, where s2 = û′û/(n−k)
Heteroskedasticity: Ω is diagonal. The heteroskedasticity-robust estimator is
(White, 1980):

V̂ar[β̂]= (
X′X

)−1 (
n∑
i=1
XiX

′
i û
2
i

)(
X′X

)−1
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The clustered regression model Preliminary: model and clustered structure

Preliminary: Clustered structure

In many cases, we expect thatΩ is not diagonal but with a clustered structure.
Suppose there are G clusters and the g-th cluster has Ng observations, thenΩ

can be regarded as a diagonal partitioned matrix:

Ω= Var[u]=


Ω1 0 · · · 0
0 Ω2 · · · 0
...

...
. . .

...
0 0 · · · ΩG

 (1)

The model can be re-written as

yg = Xgβ+ug, g= 1, · · · ,G,

with the OLS estimator

β̂−β= (X′X)−1
(
G∑
g=1

X′gug

)
= (X′X)−1

G∑
g=1

sg,

where sg ≡ X′gug.
Zeyu CHEN (School of Economics, RUC) Cluster-robust inference 2023–07–18 5 / 66
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The clustered regression model Preliminary: model and clustered structure

Preliminary: Clustered structure

Similarly, the variance of β̂ can be re-written as:

Var[β̂]= (X′X)−1Var

[
G∑
g=1

sg

]
(X′X)−1

Define Σg ≡ Var[sg]≡ Var[X′gug]. We assume errors within the same cluster are
correlated but errors from different clusters are uncorrelated. That is, ∀g 6= g′,
we have E[sgs′g′ ]= 0. Therefore,

Var[β̂]= (X′X)−1
(
G∑
g=1

Σg

)
(X′X)−1 (2)

Remarks: Since the clustered structure is a more generalized setting, equation
(2) also applies to the spherical and heteroskedastic structures.
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The clustered regression model Preliminary: model and clustered structure

The consequence of ignoring the clustered structure

Re-write sg as the sum of the sub-samples in cluster g:

sg ≡ X′gug =
Ng∑
i=1
Xgiugi ≡

Ng∑
i=1
sgi,

then one can prove that

sgs′g =
(Ng∑
i=1
Xgiugi

)(Ng∑
i=1
Xgiugi

)′
=
Ng∑
i=1

Ng∑
j=1
sgis′gj

Therefore,

Σg = E[sgs′g]=
Ng∑
i=1

Ng∑
j=1

Σg,ij,

where Σg,ij ≡ E[sgis′gj]. Here, we express Σg as the sum of the correlation of each
sample-pair in cluster g.
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The clustered regression model Preliminary: model and clustered structure

The consequence of ignoring the clustered structure

Further,

Σg =
Ng∑
i=1

Ng∑
j=1

Σg,ij =
Ng∑
i=1

Σg,ii+
Ng∑
i=1

∑
j 6=i

Σg,ij (3)

If we assume a heteroskedastic error structure (i.e., no intra-cluster correlation,
∀i 6= j, Σg,ij = 0), it is equivalent to setting the last term in (3) to 0.
Error terms within the same cluster are typically positively correlated because
these samples share common (uncontrolled) characteristics. Consequently, the
last term in Equation (3) is usually positive. This implies that setting the last
term to 0 would result in an underestimation of Σg, and consequently, the
standard error.
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The clustered regression model Preliminary: model and clustered structure

Three cluster-robust standard errors

We have shown that the variance of the OLS estimator is

Var[β̂]= (X′X)−1
(
G∑
g=1

E[sgs′g]

)
(X′X)−1, where sg ≡ X′gug

Only sg (specifically, ug) is unknown, so we need to construct a consistent
estimator for sg. We have three ways to replace ug in sg:

predicted residuals: ŝg = X′gûg
standardized residuals (transformed residuals): s̀g = X′gM−1/2

gg ûg
leave-one-out residuals (jackknife residuals): śg = X′gM−1

gg ûg
Use the predicted residuals to obtain CRVE1 (Type-1 Cluster-Robust Variance
Estimator), which is the default option when using cluster() in Stata：

CRVE1:
G(n−1)

(G−1)(n−k) (X′X)−1
(
G∑
g=1

ŝgŝ′g

)
(X′X)−1
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The clustered regression model Preliminary: model and clustered structure

Three cluster-robust standard errors

Use the standardized residuals to obtain CRVE2:

CRVE2: (X′X)−1
(
G∑
g=1

s̀gs̀′g

)
(X′X)−1

Use the leave-one-out residuals to obtain CRVE3:

CRVE3:
G−1
G

(X′X)−1
(
G∑
g=1

śgś′g

)
(X′X)−1
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The clustered regression model Preliminary: model and clustered structure

Three cluster-robust standard errors

It is recommended to use CRVE3 when sample size is small, since CRVE3 has
better small-sample properties (it is unbiased) and is relatively conservative.
How to use CRVE3 in Stata?
1. Add vce(jackknife, cluster()) in option (available for areg but not for

reghdfe):
> areg y x, ... vce(jackknife, cluster(cluster_var))

2. Add jackknife: before the command and set cluster() in option (available for
both reghdfe and areg):
> jackknife: reghdfe y x, ... cluster(cluster_var)

3. Use summclust to estimate CRVE3 faster.
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The clustered regression model Importance of clustering in large sample analysis

Large sample with clustered structure

”Using large samples in econometrics” (MacKinnon, 2023, JoE)
Large sample theory tells us that as the sample size increases, the variance of the
estimate decreases and eventually converges by probability. For example, if we
care about the sample mean of yi ∼i.i.d. (θ,σ2), its variance is

Var[ȳ]= 1
n2

n∑
i=1

Var[yi]=
σ2

n

However, if samples are correlated, then the variance of sample mean is

Var[ȳ]= 1
n2

n∑
i=1

Var[yi]+
1
n2

n∑
i=1

∑
j 6=i

Cov(yi,yj),

where the first term is O(1/n) but the second term is O(1). Therefore, if the second
term is not 0, the speed of convergence will largely decrease (or even divergent).
In fact, this is not a new issue; the contribution of this paper is to enhance the
computational efficiency within this context (but let’s skip it now).
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The clustered regression model Importance of clustering in large sample analysis

Large sample with clustered structure

So, let’s have a second look at Equation (3):

Σg =
Ng∑
i=1

Σg,ii+
Ng∑
i=1

∑
j 6=i

Σg,ij

If there exists a clustered structure, the first term increases in a speed of sample
size N, but the second term increases in a speed of N2.
Therefore, as the sample size increases, the second term will increasingly
become dominant in the variance, and ignoring the clustered structure would
result in progressively larger underestimation.
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The clustered regression model Importance of clustering in large sample analysis

Large sample with clustered structure
”Inference with Large Clustered Datasets” (MacKinnon, 2017, L’Actualité
économique)

Heteroskedasticity-robust standard errors HC1, standard errors clustered at the
”state × year” level CV1(S, Y), and standard errors clustered at the state level CV1(S)
are estimated in an existing dataset (obs.=1,156,597) by randomly selecting
sub-samples of different sample sizes.
As the sample size increases, there seems to be a lower bound on the shrinkage of
the standard error clustered at the state level, and the underestimation of the
standard error due to ignoring the clustered structure becomes increasingly larger.
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The clustered regression model Importance of clustering in large sample analysis

Large sample with clustered structure

”How Much Should We Trust Differences-In-Differences Estimates?” (Bertrand
et al., 2004, QJE)

Due to serial correlation, there may be over-rejection of inference in DD estimates.
The authors construct many ”placebo samples”, where regressors are generated
completely artificial at random (e.g., randomly assigning treatment and control
groups), and perform a t-test for each ”placebo sample”.
Because a placebo regressor is artificial, we would expect valid significance tests at
level α to reject the null close to α% of the time when the experiment is repeated
many times.
Results: Clustering by state performs well, while clustering by ”state × year”
performs poorly, and not clustering at all performs even worse.
Conclusion: When using DD estimates, it is important to cluster at least to the
geographic level where the treatment is assigned.
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The clustered regression model Importance of clustering in large sample analysis

Large sample with clustered structure

”Inference with Large Clustered Datasets” (MacKinnon, 2017, L’Actualité
économique)

Use almost the same procedure as that in Bertrand et al. (2004) to construct many
”placebo samples”. G1 refers to the number of treatment states.
When we set 5% significance and perform a t-test for each ”placebo sample”, it is
expected that about 5% of them reject the null if the cluster level is correct.
When the number of treatment groups are small, all the three standard errors
over-reject the null. But when treatment states are more than 20, using standard
errors clustered at the state level correctly rejects about 5% ”placebo samples”.
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The clustered regression model Importance of clustering in large sample analysis

Large sample with clustered structure

”Inference with Large Clustered Datasets” (MacKinnon, 2017, L’Actualité
économique)

Given the number of clusters unchanged (no the 52nd state), increasing the sample
size provides limited improvement on inference. (In the following figures, rejection
rates calculated with different sample sizes are close.)
Intuition: As said earlier, adding a new sample to an existed cluster also introduces
correlation with all existed samples in the same cluster.
To improve inference accuracy, it is more helpful to introduce a new cluster rather
than to add some new samples in existed clusters.
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The clustered regression model Importance of clustering in large sample analysis

Large sample with clustered structure

”Inference with Large Clustered Datasets” (MacKinnon, 2017, L’Actualité
économique)

If the number of treatment clusters (G1) are small, don’t use asymptotic
cluster-robust standard errors (CRVE1, CRVE2, and CRVE3) but use wide-cluster
bootstrap standard errors (introduced later).

Use boottest in Stata after running areg, ivreg2, and so on.

Wide-cluster bootstrap SEs are less likely to over-reject when G1 is small.
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Some frequent questions When to cluster? Necessary after controlling for fixed effects?

Modelling intra-cluster correlation

So what causes intra-cluster correlation?
A simple random effect model:

Samples in the same cluster share some common characteristics εg with the same
coefficient vector λg:

ugi =λgεg+εgi, where εgi ∼i.i.d. (0,ω2) and εg ∼i.i.d. (0,1)

Therefore, the covariance of any two errors ugi and ugj in the same cluster g is:

Cov(ugi,ugj)=λ2

Consider a slight more flexible model:
Samples in the same cluster share some common characteristics εg but allowing
different coefficients λgi:

ugi =λgiεg+εgi

e.g., ygi is the test score of student i in class g and εg refers to the teaching abilities
of teachers in class g.
When λgi =λgj =λg (∀i, j ∈ g), this model degrades to the random effect model.

Zeyu CHEN (School of Economics, RUC) Cluster-robust inference 2023–07–18 21 / 66



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Some frequent questions When to cluster? Necessary after controlling for fixed effects?

Necessary to cluster after controlling for FEs?

We know that controlling for FEs is equivalent to demeaning each variable by
group. So in the flexible model, the demeaned error term is:

u∗gi = ugi− ūg = (λgi− λ̄g)εg+ (εgi− ε̄g)

∀i 6= j, we have
Cov(u∗gi,u

∗
gj)= (λgi− λ̄g)(λgj− λ̄g)

Therefore, only when ∀i, λgi = λ̄g (random effect model), the demeaned errors
in the same cluster are not correlated.
Conclusion: Assuming that the intra-cluster correlation is solely attributable to
the random effect structure, the control for fixed effects would completely
absorb such correlation. However, in the vast majority of cases, this assumption
is impractical.
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Some frequent questions Clustering at which level?

The consequence of clustering at a wrong level

Suppose there are two possible cluster level: one is coarse and the other is fine,
and the fine level is nested in the coarse level. There are G clusters when using
the coarse level, and coarse cluster g comprisesMg coarse clusters.
According to (2), if the actual level is the coarse one, the variance of the
coefficient is (X′X)−1(

∑G
g=1Σg)(X

′X)−1. Re-write it to yiled:

Var[β̂]= (X′X)−1
(
G∑
g=1

Mg∑
h1=1

Mg∑
h2=1

Σg,h1h2

)
(X′X)−1

where h1 and h2 denote the fine clusters nested in coarse cluster g.
However, if we wrongly choose the fine cluster, then we assume the variance is:

Var[β̂]= (X′X)−1
(
G∑
g=1

Mg∑
h=1

Σgh

)
(X′X)−1
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Some frequent questions Clustering at which level?

The consequence of clustering at a wrong level

If the actual level is the coarse level but we choose the fine level, the bias is:

G∑
g=1

Mg∑
h1=1

Mg∑
h2=1

Σg,h1h2 −
G∑
g=1

Mg∑
h=1

Σgh =
G∑
g=1

Mg∑
h1=1

∑
h2 6=h1

Σg,h1h2 (4)

This bias comes from the inter-(fine-)cluster correlation in the same coarse
cluster. The bias increases as the sample size increases.
If the actual level is the fine level but we choose the coarse level (i.e., the right
side of (4) is zero), there is no bias. However, since we use some information to
estimate those inter-(fine-)cluster uncorrelation, it’s at the cost of decreased
estimation efficiency.

Zeyu CHEN (School of Economics, RUC) Cluster-robust inference 2023–07–18 25 / 66



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Some frequent questions Clustering at which level?

Two rules of thumb to choose the level

An intuitive rule: to choose the most coarse one among all possible levels
(Cameron and Miller, 2015).
”A Practitioner’s Guide to Cluster-Robust Inference” (Cameron and Miller, 2015,
Journal of Human Resources)

”It is possible for cluster-robust errors to actually be smaller than default standard
errors.”

In some rare cases errors may be negatively correlated, most likely when G= 2.
If clustering has a modest effect so cluster-robust and default standard errors are similar
in expectation, then cluster-robust may be smaller due to noise.

”In cases where the cluster-robust standard errors are smaller, they are usually not
much smaller than the default, whereas in other applications they can be much,
much larger.”
”There is no general solution to this tradeoff, and there is no formal test of the level
at which to cluster. The consensus is to be conservative and avoid bias and to use
bigger and more aggregate clusters when possible, up to and including the point at
which there is concern about having too few clusters.”
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Some frequent questions Clustering at which level?

Two rules of thumb to choose the level

It’s possible that the intra-cluster correlation is negative. In such cases, ignoring
the cluster structure could lead to even larger standard errors.
”The Power of the Street: Evidence from Egypt’s Arab Spring” (Acemoglu et al.,
2018, RFS)

”All standard errors we report throughout are robust to heteroscedasticity. In
addition, because there might be other factors correlated across connected firms,
we report adjusted standard errors and portfolio-based results that account for
potential cross-firm correlation of residual returns in the appendix. These
robustness checks consistently show that residual returns are negatively correlated
with the group of politically connected firms, such that adjusted standard errors
tend to be narrower than unadjusted standard errors. To be conservative, we
therefore report the wider (robust) standard errors in the main text.”
”In column 4, we adjust standard errors for the cross-correlation of error terms
estimated in 2010 data, with very similar results and somewhat smaller standard
errors, reflecting the (aforementioned) fact that the residual correlation between
connected firms is negative.”
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Some frequent questions Clustering at which level?

Two rules of thumb to choose the level
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Some frequent questions Clustering at which level?

Two rules of thumb to choose the level

A conservative rule: to report the largest standard error for the coefficient of
interest across all estimated at varying possible cluster levels. (Angrist and
Pischke, 2008). This rule leads to the most conservative standard error with the
higher risk of a significant loss of estimated efficiency.
Mostly harmless econometrics: An empiricist’s companion (Angrist and Pischke,
2008)

This viewpoint is proposed in this book when the authors are comparing
heteroskedasticity-robust standard errors to conventional standard errors based on
the spherical disturbance assumption.
”[R]obust standard errors are no panacea. They can be smaller than conventional
standard errors for two reasons: the small sample bias we have discussed and the
higher sampling variance of these standard errors. We therefore take empirical
results where the robust standard errors fall below the conventional standard
errors as a red flag. This is very likely due to bias or a chance occurrence that is
better discounted.”
”In this spirit, we like the idea of taking the maximum of the conventional standard
error and a robust standard error as your best measure of precision. This rule of
thumb helps on two counts: it truncates low values of the robust estimators,
reducing bias, and it reduces variability.”
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Some frequent questions Pre-tests for deciding the clustering level?

Outline
1. The clustered regression model

Preliminary: model and clustered structure
Importance of clustering in large sample analysis

2. Some frequent questions
When to cluster? Necessary after controlling for fixed effects?
Clustering at which level?
Pre-tests for deciding the clustering level?
Why to two-way cluster?

3. Asymptotic inference
Asymptotic theories with clustered structure
Case 1: large number of clusters
Case 2: small number of large clusters

4. Bootstrap inference
The idea of bootstrap
Wild-cluster bootstrap

5. Concluding remarks
What to report?
Overall recommendations
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Some frequent questions Pre-tests for deciding the clustering level?

MNWmethod

”Testing for the appropriate level of clustering in linear regression models”
(MacKinnon et al., 2023, JoE)

Idea: If the true level is the fine one, the standard error estimated at the fine level
should be close to that estimated at the coarse level. In other words, the right hand
side of (4) is 0.
Formally, define Σc ≡∑G

g=1
∑Mg
h1=1

∑Mg
h2=1Σg,h1h2 and Σf ≡

∑G
g=1

∑Mg
h=1Σgh, then the

null hypothesis is:

H0: lim
N→∞ΣfΣ

−1
c = I and H1: lim

N→∞ΣfΣ
−1
c 6= I

Accordingly, by constructing four consistent estimators: Σ̂f, Σ̂c, V̂ar[Σ̂f], and
V̂ar[Σ̂c], the authors prove that:

Under the null, τσ = θ̂/
√
V̂ar(θ̂)→d N(0,1), where θ̂ ≡ vech

(
Σ̂c− Σ̂f

)
Command in Stata: mnwsvt, available at
http://qed.econ.queensu.ca/pub/faculty/mackinnon/svtest.
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Some frequent questions Pre-tests for deciding the clustering level?

Permutation test

The formerly discussed ”placebo sample method” (also called ”permutation
test”) can also be used to test the cluster level.
Idea: Since the treatment regressor is randomly assigned, it must be
uncorrelated with the dependent variable. Therefore, this procedure simulates
the distribution of the coefficient of interest when it is actually 0. As we don’t
make any parametric assumptions about the error structure, this procedure
does not suffer from the bias due to wrongly choosing the cluster level.
Use permute to implement the permutation test in Stata.
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Some frequent questions Pre-tests for deciding the clustering level?

Permutation test

The permutation test (”placebo test”) is commonly used in DD estimation
(especially in Chinese literature). We should note that it is used to support the
statistic inference rather than the causal identification.
How to interpret the result of permutation test?
”Salience and Taxation: Theory and Evidence” (Chetty et al., 2009, AER)

”A concern in DD analysis is that serial correlation can bias standard errors, leading
to over-rejection of the null hypothesis of no effect. To address this concern, we
implement a nonparametric permutation test for δ= 0.”
”Intuitively, if the experiment had a significant effect on demand, we would expect
the estimated coefficient to be in the lower tail of estimated placebo effects. Since
this test does not make parametric assumptions about the error structure, it does
not suffer from the over-rejection bias of the t-test.”
”Figure 1 illustrates the results of the permutation test by plotting the empirical
distribution of placebo effects G for log quantity. The vertical line in the figure
denotes the treatment effect reported in Table 4. For log quantity, G(δ)= 0.07. An
analogous test for log revenue yields G(δ)= 0.04. Although these p-values are
larger than those obtained using the t-tests, they confirm that the intervention led
to an unusually low level of demand.”
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Some frequent questions Pre-tests for deciding the clustering level?

Permutation test
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Some frequent questions Pre-tests for deciding the clustering level?

The issue of pre-tests

Intuition: Pre-tests usually lead to over-rejection, since pre-tests in and of
themselves could make mistakes.
Therefore, joint hypotheses test should be applied when implementing t-tests in
regressions. (i.e., those t-tests based on the cluster level resulted from the
pre-tests should also take into account the probability of making mistake in
pre-tests.)
In practice, however, such joint hypotheses test is seldomly used.
Conclusion: Although there are effective pre-tests for choosing the cluster level,
they are not as conservative as the second rule of thumb. The ideal procedure is
to cluster based on the second rule of thumb and use pre-tests to further
support the choice.
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Some frequent questions Why to two-way cluster?

Outline
1. The clustered regression model

Preliminary: model and clustered structure
Importance of clustering in large sample analysis

2. Some frequent questions
When to cluster? Necessary after controlling for fixed effects?
Clustering at which level?
Pre-tests for deciding the clustering level?
Why to two-way cluster?

3. Asymptotic inference
Asymptotic theories with clustered structure
Case 1: large number of clusters
Case 2: small number of large clusters

4. Bootstrap inference
The idea of bootstrap
Wild-cluster bootstrap

5. Concluding remarks
What to report?
Overall recommendations
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Some frequent questions Why to two-way cluster?

Two-way clustering

In some cases, there are various dimensions of intra-cluster correlation. For
example, errors could be correlated because they are in the same geographic
region or in the same time period.
Suppose there are two clustered dimension: dimension A with G clusters (e.g.,
state level) and dimension B with H clusters (e.g., year level), indexed by g and
h, respectively. Now the regression model is:

ygh = Xghβ+ugh, g= 1, · · · ,G, h= 1, · · · ,H

where subscript gh denotes the sample is grouped to the g-th cluster in
dimension A and the h-th cluster in dimension B.
Remarks: Two-way clustering is different to the ”state × year” level we
discussed earlier, which assumes that only samples in the same state and in the
same year are correlated. However, by assuming a two-way clustered structure,
we mean that ugh are correlated as long as they share the same g or h.

Zeyu CHEN (School of Economics, RUC) Cluster-robust inference 2023–07–18 37 / 66



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Some frequent questions Why to two-way cluster?

Two-way clustering

With the two-way clustered structure, the variance of coefficient is

Var[β̂]= (X′X)−1Var

[∑
g,h
sgh

]
(X′X)−1

= (X′X)−1
( ∑
g,h,g′,h′

E[sghs′g′h′ ]

)
(X′X)−1,

where sgh ≡ X′ghugh. Only when g 6= g′ and h 6= h′, E[sghsg′h′ ]= 0 always holds.

One can prove that

∑
g,h,g′,h′

E[sghs′g′h′ ]=
G∑
g=1

E[sgs′g]+
H∑
h=1

E[shs′h]−
G∑
g=1

H∑
h=1

E[sghs′gh]
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Some frequent questions Why to two-way cluster?

Two-way clustering

Similar to the earlier, by replacing the error term in sg, sh, and sgh with the
residuals (see Slide #9), we obtain an estimator for the variance:

V̂ar[β̂]= (X′X)−1
(
G∑
g=1

ŝgŝ′g+
H∑
h=1

ŝhŝ′h−
G∑
g=1

H∑
h=1

ŝghŝ′gh

)
(X′X)−1

Using in Stata: add cluster(cluster_var1, cluster_var2) in the option
(available for reghdfe and ivreg2).
> reghdfe y x, ... cluster(cluster_var1, cluster_var2)
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Asymptotic inference Asymptotic theories with clustered structure

Outline
1. The clustered regression model

Preliminary: model and clustered structure
Importance of clustering in large sample analysis

2. Some frequent questions
When to cluster? Necessary after controlling for fixed effects?
Clustering at which level?
Pre-tests for deciding the clustering level?
Why to two-way cluster?

3. Asymptotic inference
Asymptotic theories with clustered structure
Case 1: large number of clusters
Case 2: small number of large clusters

4. Bootstrap inference
The idea of bootstrap
Wild-cluster bootstrap

5. Concluding remarks
What to report?
Overall recommendations
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Asymptotic inference Asymptotic theories with clustered structure

Asymptotic theories

Now let’s focus on specific methods of inference.
When using asymptotic standard errors, we are concerned about how well the
asymptotic theories work.
For example, we are interested in the null hypothesis H0: a′β= a′β0, thus we
construct a t-statistic:

ta = a′(β̂−β0)√
a′V̂a

,

where V̂ is an estimator for the variance-covariance matrix of the estimated
coefficient β̂ (which can be CRVE1, CRVE2, or CRVE3).
The core idea of asymptotic inference: For statistic inference, we need to know
the distribution of the inference estimator. However, as we never know the
actual distribution of the error term, we never know the actual distribution of ta
theoretically. Therefore, we consider to use its asymptotic distribution to
replace its actual distribution.
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Asymptotic inference Asymptotic theories with clustered structure

Key conditions for asymptotic theories

Econometrics (Hansen, 2022, Section 4.22)
”In many respects cluster-robust inference should be viewed similarly to
heteroskedaticity-robust inference where a ’cluster’ in the cluster-robust case is
interpreted similarly to an ’observation’ in the heteroskedasticity-robust case.”
”In particular, the effective sample size should be viewed as the number of clusters,
not the ’sample size’ n. This is because the cluster-robust covariance matrix
estimator effectively treats each cluster as a single observation and estimates the
covariance matrix based on the variation across cluster means.”

In other words, we can regard the asymptotic inference as two steps:
Step 1: Calculate the variance-covariance matrix Σ̂g of score vector sg ≡ X′gug
cluster by cluster.
Step 2: Regard each cluster as a whole (now no correlation between errors) and
inference with a heteroskedasticity structure.
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Asymptotic inference Asymptotic theories with clustered structure

Key conditions for asymptotic theories

Whether asymptotic standard errors work well depends on whether asymptotic
theories are satisfied. Based on the ”two steps” in the earlier slide, we need to
focus on:

The law of large number (LLM) should hold to ensure
∑G
g=1 ŝgŝ

′
g to converge to the

actual variance-covariance matrix
∑G
g=1Σg (i.e., enough samples in each cluster are

required).
The central limit theorem (CLT) should hold to ensure

∑G
g=1 sg to converge to a

multivariate normal distribution with the variance of
∑G
g=1Σg (i.e., enough clusters

are required).
With a clustered structure, what does n→∞mean in asymptotic theories?

Case 1: Keep the number of samples in existed clusters remained (but still enough
for LLN) and add new clusters (i.e., large number of clusters).
Case 2: Keep the number of clusters remained and increase the number of samples
in each cluster (i.e., small number of large clusters).

Intuitively, Case 1 is more in line with the requirements of the ”two-steps”
inference procedure.
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Asymptotic inference Asymptotic theories with clustered structure

Key conditions for asymptotic theories

Again intuitively, given the number of clusters, if there is less heterogeneity
among clusters (specifically, among sg), the CLT could work better.
In summary, we have gained three insights so far:
1. With respect to the effectiveness of the CLT, the number of clusters is crucial.

Therefore, with a clustered structure, we should not only care about the sample
size, but also the number of clusters.

2. The number of clusters and the heterogeneity among clusters both determine
whether asymptotic theories work well. Therefore, there will not be a universal
threshold of clusters G∗ beyond which we can be assured of effective inference.

3. We should pay attention to the heterogeneity among clusters (e.g., some clusters
with a large proportion of total samples).
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Asymptotic inference Case 1: large number of clusters

Outline
1. The clustered regression model

Preliminary: model and clustered structure
Importance of clustering in large sample analysis

2. Some frequent questions
When to cluster? Necessary after controlling for fixed effects?
Clustering at which level?
Pre-tests for deciding the clustering level?
Why to two-way cluster?

3. Asymptotic inference
Asymptotic theories with clustered structure
Case 1: large number of clusters
Case 2: small number of large clusters

4. Bootstrap inference
The idea of bootstrap
Wild-cluster bootstrap

5. Concluding remarks
What to report?
Overall recommendations
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Asymptotic inference Case 1: large number of clusters

Large number of clusters

Suppose that each cluster hasM samples, it can be proved that, under the null
hypothesis, we have

p
G(β̂−β0) d→N(0,GV̂).

However, the sample size of each cluster is different in practice, which could be
a potential threaten to inference. For instance, if the sample size of a specific
cluster is much larger than others, this cluster may have a large variance of sg
(i.e., Σg ≡ E[sgsg′ ]), making it has a dominant influence when applying the CLT. In
such a scenario, the CLT typically couldn’t work well.
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Asymptotic inference Case 1: large number of clusters

Large number of clusters

”Asymptotic theory and wild bootstrap inference with clustered errors”
(Djogbenou et al., 2019, JoE)

When there is a large cluster (e.g., N1 = 0.5N), increasing the number of clusters
inversely aggravates over-rejection.
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Asymptotic inference Case 1: large number of clusters

Large number of clusters
”Fast and reliable jackknife and bootstrap methods for cluster-robust inference”
(MacKinnon et al., 2023, Journal of Applied Econometrics)

Simulation: γ denotes the heterogeneity of sample sizes among clusters. When
γ= 0, samples are distributed uniformly; when γ= 2, the sample sizes increase
from 130 to 899.
It’s shown that, compared to CRVE1 and CRVE2, CRVE3 works much better under
larger heterogeneity. But regrettably, CRVE3 is not a magic bullet!
”However, as we shall see, there are also many cases in which CV3 overrejects, and
CV3J therefore overrejects slightly more. In practice, it would be perfectly
reasonable to report either CV3 or CV3J.”
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Asymptotic inference Case 1: large number of clusters

Large number of clusters

Accordingly, even though with case 1, there still exists at least two reasons
leading to over-rejection:

Small number of treatment clusters (please review slide #1715).
Some clusters have a large proportion of samples.

Regarding the second reason, we need some methods to judge the influence of
a single cluster and report the results in studies.
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Asymptotic inference Case 1: large number of clusters

Influence and leverage

Use the leave-one-out coefficient to evaluate the influence of a specific cluster:

β̂(g) = (X′X−X′gXg)−1(X′y−X′gyg)

Similarly to the leverage of a single sample, we can use the hat matrix to
evaluate the leverage of a single cluster. We know elements in the main
diagonal of hat matrix Px = X′(X′X)−1X′ presents the leverage of each sample,
thus adding them yields the leverage of a cluster:

Lg = tr(Hg)= tr[X′gXg(X
′X)−1]

This expression explains again why a large cluster is influential.
Compare each cluster’s leverage to the average, which is

1
G

(∑
g
Lg

)
= tr[X(X′X)−1X′]= tr[X′X(X′X)−1]= k

G
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Asymptotic inference Case 1: large number of clusters

Influence and leverage

In practice, we usually solely care about the coefficient of a specific explanatory
variable, thus we can use the FWL theorem to calculate the partial leverage for
each cluster:

Lgj =
x́′gjx́gj
x́′j x́j

where x́j is the estimated residual from the regression with the explanatory
variable of interest xj as the dependent variable.
Use summclust to calculate influence, leverage, partial leverage, and in Stata.
Of course, we can calculate them on our own since these estimators are not
that complicated.
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Asymptotic inference Case 2: small number of large clusters

Outline
1. The clustered regression model

Preliminary: model and clustered structure
Importance of clustering in large sample analysis

2. Some frequent questions
When to cluster? Necessary after controlling for fixed effects?
Clustering at which level?
Pre-tests for deciding the clustering level?
Why to two-way cluster?

3. Asymptotic inference
Asymptotic theories with clustered structure
Case 1: large number of clusters
Case 2: small number of large clusters

4. Bootstrap inference
The idea of bootstrap
Wild-cluster bootstrap

5. Concluding remarks
What to report?
Overall recommendations
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Asymptotic inference Case 2: small number of large clusters

Small number of large clusters

Firstly, all threats in case 1 exist in case 2!
Additionally, the small number of clusters leads to extra concerns to the
satisfaction of the CLT.
”Inference with dependent data using cluster covariance estimators” (Bester et
al., 2011, JoE)

This paper proves that the CLT holds in case 2 with some strict assumptions:
”... all the clusters are assumed to be the same sizeM.”
”... it limits the amount of dependence within each cluster and requires it to diminish
quite rapidly asM→∞.” (This is usually unrealistic in panel data settings.)
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Asymptotic inference Case 2: small number of large clusters

Summary: inference with asymptotic standard errors

Threat: We use the asymptotic distribution to replace the actual distribution of
inference estimator. But the asymptotic distribution can sometimes quite differ
from the actual one.

Small number of clusters G, large heterogeneity among clusters, ..., which could
weaken the effectiveness of the large sample theories.
Unfortunately, it is challenging (if not impossible) to establish a universal criterion
for determining the number of clusters and the level of heterogeneity that can
ensure the satisfaction of the CLT.

Can we directly estimate the true distribution of the inference estimator instead
of relying on its asymptotic distribution?
”Instead of basing inference on an asymptotic approximation to the distribution
of a statistic of interest, it is often more reliable to base it on a bootstrap
approximation. [...] We therefore recommend that at least one variant of the
WCR bootstrap be used almost all the time.”
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Bootstrap inference The idea of bootstrap

Outline
1. The clustered regression model

Preliminary: model and clustered structure
Importance of clustering in large sample analysis

2. Some frequent questions
When to cluster? Necessary after controlling for fixed effects?
Clustering at which level?
Pre-tests for deciding the clustering level?
Why to two-way cluster?

3. Asymptotic inference
Asymptotic theories with clustered structure
Case 1: large number of clusters
Case 2: small number of large clusters

4. Bootstrap inference
The idea of bootstrap
Wild-cluster bootstrap

5. Concluding remarks
What to report?
Overall recommendations
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Bootstrap inference The idea of bootstrap

The idea of bootstrap

The core idea of bootstrap inference: For statistic inference, we need to know
the distribution of the inference estimator. However, as we never know the
actual distribution of the error term, we never know the actual distribution of ta
theoretically. Therefore, we consider to estimate its actual distribution and use
this empirical distribution to replace its actual distribution.
Suppose that we are inferring with an estimator τ, we can resample the original
samples to yield B bootstrap samples (e.g., randomly-sampled sub-samples) and
then calculate B inference estimators τ∗b (b= 1, · · · ,B), which provides the
empirical distribution of τ. Theoretically, the empirically distribution can be a
good approximation of the actual distribution.
Considering the trade-off between accuracy and computational time, we usually
choose that B= 9,999 or 99,999.
Based on the empirical distribution, we can estimate the p-value and the
confidential interval of the inference estimator.
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Bootstrap inference Wild-cluster bootstrap

Outline
1. The clustered regression model

Preliminary: model and clustered structure
Importance of clustering in large sample analysis

2. Some frequent questions
When to cluster? Necessary after controlling for fixed effects?
Clustering at which level?
Pre-tests for deciding the clustering level?
Why to two-way cluster?

3. Asymptotic inference
Asymptotic theories with clustered structure
Case 1: large number of clusters
Case 2: small number of large clusters

4. Bootstrap inference
The idea of bootstrap
Wild-cluster bootstrap

5. Concluding remarks
What to report?
Overall recommendations
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Bootstrap inference Wild-cluster bootstrap

Wild-cluster bootstrap

Wild-cluster bootstrap is a residual-based resampling method.
Restricted wild-cluster bootstrap (WCR): Define the estimated coefficient
resulting from the Constrained Least Squares (CLS) with a restriction a′β= a′β0
as β̃. The restricted residuals for the g-th cluster is then ũg = yg−Xgβ̃.
Therefore, we can construct the bootstrap sample b as follows:

y∗g
b = Xgβ̃+u∗gb, where u∗gb = v∗gbũg and vector v∗g

b ∼i.i.d. (0,1)

We usually use Rademacher distribution (variable taking -1 or 1 with probability
of 0.5, respectively) when generating v∗g

b.
Unrestricted wild-cluster bootstrap (WCU): Similar to WCR, the only difference is
to use OLS instead of CLS.
Intuition: Since v∗g

b is independent among clusters, the DGP of bootstrap
samples ensures that there is no inter-cluster correlation.

Zeyu CHEN (School of Economics, RUC) Cluster-robust inference 2023–07–18 58 / 66



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bootstrap inference Wild-cluster bootstrap

Wild-cluster bootstrap

”Asymptotic theory and wild bootstrap inference with clustered errors”
(Djogbenou et al., 2019, JoE)

In finite samples, WCR usually performs better than WCU.
In addition, we can generate the new error terms at the sample level rather than at
the cluster level (i.e., generating i.i.d. v∗i

b for each sample rather than generating
i.i.d. v∗gb for each cluster). The corresponding method is known as restricted wild
bootstrap (WR) and unrestricted wild bootstrap (WU). However, in many cases,
WCR performs better than WR; additionally, WR requires much more
computational time when sample size is large.

Use boottest in Stata to apply WCR.
It is actually an easy and convenient command in Stata, please refer to the help
file for guidance on its usage.
A crash course: Click here to download the replication package for Section 8. Then
read the do-file and text in Section 8 carefully, where the authors show how to use
boottest to apply WCR.
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Bootstrap inference Wild-cluster bootstrap

Wild-cluster bootstrap

”Asymptotic theory and wild bootstrap inference with clustered errors”
(Djogbenou et al., 2019, JoE)

Based on simulation, with ρx (denotes the level of intra-cluster correlation)
increases, asymptotic standard errors (t(24) in the figure) tend to over-reject.
WCR-R (WCR with using Rademacher distribution to generate those new error
terms) performs the best among all variants of wild bootstrap.
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Bootstrap inference Wild-cluster bootstrap

Remarks on using WCR

”We recommend using at least one variant of the WCR bootstrap (preferably
with at least B= 9,999) almost all the time.”
WCR is also not a magic bullet. When the number of treatment groups are
small, WCR would become extremely conservative (see slide #19). Instead, we
can consider to use WR in such scenario.
If our sample is similar to the case 2 discussed ealier, WCR-R can sometimes
yield accurate inferences, but this is not always the case. (”The wild bootstrap
with a ’small’ number of ’large’ clusters”, Canay et al., 2021, REStat)
If G is small, we should avoid using two-point distributions like Rademacher
distribution (choosing other distributions in the option of boottest).
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Concluding remarks What to report?
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Preliminary: model and clustered structure
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When to cluster? Necessary after controlling for fixed effects?
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Concluding remarks What to report?

What should applied researchers report?

1. In addition to the default CRVE1, report at least 1 or 2 other types of standard
errors, e.g., CRVE3 and a variant of WCR.

2. As discussed earlier, the CLT relies on enough clusters rather than solely on large
sample size. Therefore, it is important to report the number of clusters.

3. The heterogeneity among clusters is also important for inference, thus
researchers should report the median, minimum, and maximum of sample sizes
among all clusters.

4. Additionally, report the leverage Lg, partial leverage Lgj, and leave-one-out
coefficient β(g)

j of each cluster.

5. When using two-way clustering (or clustering with more than 2 dimensions),
researchers should report the above information of each cluster and each of
their intersections.
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Concluding remarks Overall recommendations
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Concluding remarks Overall recommendations

Overall recommendations

1. List all plausible clustering dimensions and levels for the data at hand and think
about the potential clustered structure before regression. The decision
obviously depends on what is to be estimated. A conservative approach is
simply to choose the structure with the largest standard error(s) for the
coefficient(s) of interest, subject to the number of clusters not being so small
that inference risks being unreliable (It’s more common to report SEs clustered
in different levels). Some pre-tests (MNW test and placebo test) can be helpful
in making this decision.

2. If using DD specification, we should at least cluster at the treatment level.
3. After choosing the cluster level, it is suggested to report at least the minimum,

maximum, mean, and median of the sample sizes among clusters.
4. For the key regression specification(s) considered, report information about

leverage, partial leverage, and influence. This may be particularly informative
for DD and other treatment models. Inferences may not be reliable when a few
clusters are highly influential or have high (partial) leverage.
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Concluding remarks Overall recommendations

Overall recommendations

5. In addition to, or instead of, the usual CRVE1, employ the CRVE3 and at least one
variant of the restricted wild cluster (WCR) bootstrap for both tests and
confidence intervals. In many cases, especially when G is reasonably large and
the clusters are fairly homogeneous, these methods will yield very similar
inferences that can likely be relied upon. However, when they differ, it would be
wise to try other methods as well, including additional variants of the WCR
bootstrap and some of the alternative methods.

6. For models with treatment at the cluster level (e.g., DD), where either the
treated clusters or the controls are few in number and/or atypical,
cluster-robust inference can be quite unreliable, even when it is based on CRVE3
or the WCR bootstrap. In such cases, it is important to verify that the results are
(or perhaps are not) robust. This can often be done by using methods based on
placebo test (permutation test).
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