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Abstract

This paper investigates the unintended consequences of selective R&D subsidy policies targeting

leading firms on the innovation activities of non-subsidized competitors and new entrants. While such

subsidies are typically designed to stimulate innovation, the paper employs a Schumpeterian model to

argue that they can discourage innovation among competitor firms and deter new entrants, ultimately

undermining aggregate innovation. Empirical evidence from the “National Technological Innovation

Demonstration Enterprise (NTIDE)” policy in China supports these predictions, revealing a 30% in-

crease in R&D spending by subsidized firms, but a 13.3% reduction in R&D by competitor firms and a

5.9% decline in the entry of private firms. Furthermore, the policy results in a 13.5% decrease in patent

outputs at the corresponding industry and city levels where the certified demonstration enterprises are

located. The paper underscores the importance of considering competitive dynamics when designing

innovation policies and provides new insights into the effects of selective subsidies on market competi-

tion and innovation.
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1 Introduction

Innovation is a critical driver of long-term economic growth (Romer, 1990; Aghion and Howitt, 1992).

Owing to its pronounced externalities, innovation frequently necessitates government intervention, with

selective R&D subsidies being one of the most widely used policy instruments (Edler and Fagerberg, 2017).

A substantial body of literature has demonstrated the positive effects of subsidy policies on recipient firms

(Mamuneas and Ishaq Nadiri, 1996; Feldman and Kelley, 2006; Howell, 2017; Pallante et al., 2023; Dong

et al., 2024). In recent years, the focus has increasingly shifted toward knowledge spillovers, suggesting

that subsidies may confer benefits to other firms by influencing the recipients (Moretti et al., 2023; Pallante

et al., 2023; Giroud et al., 2024). Overall, much of the existing research adopts a favorable perspective on

these policies, often emphasizing the need to enhance efficiency by better targeting firms with higher

potential for innovation and spillovers.

In contrast to the prevailing emphasis on the positive effects of selective R&D subsidies, this paper un-

derscores the potential negative consequences that may arise when such policies alter innovation com-

petition. Drawing on Schumpeter’s insights on creative destruction, the incentive for new or lagging firms

to engage in R&D stems from displacing industry leaders and capturing monopoly profits through inno-

vation (Schumpeter, 1934). When subsidies are allocated to leading firms, this may reduce the likelihood

that new or competitor firms can displace these leaders, thereby diminishing the expected returns from

engaging in R&D activities. Consequently, such selective subsidies may encourage leading firms at the

expense of discouraging innovation among these firms, leading to unintended negative spillovers and

ambiguous aggregate effects. This implies that the selection of subsidized firms is not merely a matter of

efficiency but also potentially one of effectiveness.

To illustrate these firm dynamics, I develop a simplified two-period Schumpeterian model. In this

theoretical framework, the leading firm captures monopolistic profits and invests in R&D to increase its

expected profits in the second period. The model suggests that an increase in government-provided sub-

sidies incentivizes the leading firm to raise its total R&D expenditures, thereby achieving higher expected

productivity in the subsequent period. Competitor firms or new entrants, represented by a representa-

tive firm, also engage in R&D activities during the first period to develop new technologies for the second

period. If the productivity derived from the new technology surpasses that of the leading firm, they enter

the market and capture the monopolistic profits. The model indicates that, with the expectation that the

leading firm will achieve higher productivity in the second period, the optimal strategy for competitor

firms or new entrants lagging behind the productivity frontier is to reduce their R&D expenditures.

The policy practices in China provide a suitable case study to test this theoretical prediction. Since

2011, the Chinese government has implemented the “National Technological Innovation Demonstra-

tion Enterprise (NTIDE)” policy, which annually certifies local “superstar firms” as “demonstration en-

terprises” and subsidizes their innovation activities, without reducing subsidies to other firms. Empirical

findings reveal that the policy encourages listed demonstration enterprises to increase their R&D expen-

ditures by 30%. However, it has had a negative effect on the R&D expenditures of other listed competitor

firms, reducing them by 13.3%. These negative effects are more pronounced for incumbent firms that lag

further behind the productivity frontier. Additionally, the policy has led to a significant decrease in the

entry of private firms and foreign firms by 5.9% and 13.8%, respectively.

The divergent influences on demonstration enterprises and other firms suggest an ambiguous overall

effect on aggregate innovation. Accordingly, I conduct an estimation at the city–industry level to inves-

tigate the change in the citation-weighted number of invention patents after an industry in a city expe-

riences its first subsidized demonstration enterprises. The estimation reveals a gradually exacerbated

negative effect over time, resulting in a decrease in patent outputs by approximately 13.5% (or 4% based
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on the most conservative estimates). Furthermore, this study finds that such negative overall effects are

more pronounced in industries characterized by more intense market competition and higher rates of

firm entry, which aligns with the narrative of discouraging effects on competitors.

Furthermore, to estimate the overall effects nationwide, I assess the inter-industry spillovers and spa-

tial spillovers of the NTIDE policy by reclassifying the control group. The estimation reveals negligible

spillover effects across industries and regions, suggesting that the policy results in a net negative effect on

national innovation. Additionally, I investigate whether the policy promotes local knowledge spillovers

by supporting industry leaders. However, the findings again indicate that such influences are small in

magnitude.

Taken together, this study sheds light on the potential pitfalls of selectivity subsidies, or more broadly,

selective innovation policies. Since firms’ incentives to engage in R&D activities stem from the expected

profits derived from innovation, interventions affecting any single firm can influence the entire market

through competitive interactions among firms. Consequently, selective innovation policies must carefully

evaluate their impacts on innovation competition within industries; otherwise, the overall effects may be

undermined or even counterproductive.

This study contributes to and extends three strands of the literature. First, as discussed in the opening

paragraph, it relates to the broad body of research on R&D subsidy policies, which has gradually shifted

its focus from subsidized firms to exploring knowledge spillovers and spatial interactions (Mamuneas

and Ishaq Nadiri, 1996; Feldman and Kelley, 2006; Howell, 2017; Moretti et al., 2023; Pallante et al., 2023;

Dong et al., 2024; Giroud et al., 2024). This study enriches the literature by documenting the negative

aspects of selective subsidy policies, a relatively underexplored dimension. Among the few studies ex-

amining negative effects, Acemoglu et al. (2018) theoretically demonstrate that subsidies to incumbent

firms can increase factor prices, thereby raising entry costs for potential entrants. Similarly, Aghion et al.

(2019) find that easing financing constraints for incumbent firms in France led to the persistence of less

efficient firms. In contrast to subsidizing all incumbents, the NTIDE policy exhibits greater selectivity by

targeting “superstar” firms. By modeling and estimating its effects on both incumbent competitors and

new entrants, this study offers a new perspective on the negative consequences of altering the innova-

tion competition dynamics among firms, which may inadvertently result in adverse effects on aggregate

innovation.

Secondly, this study contributes to the ongoing discourse on the relationship between innovation and

competition. Earlier research has primarily utilized cross-industry variations to identify this relation-

ship, with some studies uncovering an “inverted-U” shaped relationship (Blundell et al., 1999; Aghion

et al., 2005, 2009). However, it has increasingly been acknowledged that innovation and market struc-

ture are endogenously determined, implying that their relationship cannot be adequately captured by a

universal function (Gilbert, 2020). Recent studies have shifted the focus towards examining the effects of

specific competition shocks, such as mergers of large firms and the exogenous entry of competitors, and

have identified heterogeneous effects across different market environments and industries (Goettler and

Gordon, 2011; Gutiérrez and Philippon, 2017; Autor et al., 2020; Liu and Ma, 2020). This study enriches

the existing literature by considering selective subsidies as another type of shock affecting innovation

competition among firms. Furthermore, it contributes to the understanding of heterogeneous effects of

competition shocks across industries by revealing the divergent impacts on different innovation agents.

Specifically, this study finds that industries characterized by more intense competition and higher rates

of firm entry are more likely to experience adverse effects from subsidizing leading firms.

Finally, this study contributes to the literature on the role of different innovation agents, with a par-

ticular focus on the relationship between innovation and firm size, a central debate in the field. Earlier

studies on this topic have been comprehensively surveyed in Cohen (2010). Recent research continues
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to provide mixed evidence: some argue that the contributions of leading firms to nationwide total factor

productivity growth are declining (Gutiérrez and Philippon, 2019), and that younger firms play a more

significant role in exploring new products (Akcigit and Kerr, 2018) and generating high-quality inventions

(Arora et al., 2023). Conversely, others emphasize the increasingly dominant role of large firms in driving

innovation (Garcia-Macia et al., 2019; König et al., 2022; Braguinsky et al., 2023). In this study, the negative

overall effects of the NTIDE policy on aggregate innovation suggest that new firms and small-to-medium

enterprises, which typically lag behind the productivity frontier, may play a more substantial role in driv-

ing aggregate innovation in China. This finding provides new empirical evidence to this ongoing debate.

The remainder of this paper is structured as follows. Section 2 summarizes the background and key

characteristics of the NTIDE policy. Section 3 develops a theoretical framework to formulate the proposi-

tions. Section 4 conducts an enterprise-level investigation to empirically examine the propositions. Sec-

tion 5 estimates the overall effects at the city–industry level to uncover the aggregate impacts of divergent

influences on different firms. Section 6 further investigates the spillover effects of the NTIDE policy, en-

compassing inter-industry, spatial, and local knowledge spillovers. Section 7 concludes the study.

2 Policy background

In September 2010, the Ministry of Industry and Information Technology (MIIT) of China issued an of-

ficial document to launch the “National Technological Innovation Demonstration Enterprise (NTIDE)”

policy.1 The document emphasizes that the NTIDE policy is designed to encourage the innovation ac-

tivities of industrial enterprises, thereby facilitating the national transition to innovation-driven growth.

Specifically, the policy seeks to support “enterprises with strong technological innovation capabilities,

significant innovation performance, and an important role in demonstrating and guiding key industrial

sectors.”

Demonstration enterprises are certified annually, with the first batch identified at the end of 2011. The

certification process typically begins in the first half of each year, with enterprises submitting applications

to provincial government departments.2 These departments conduct preliminary audits, generate rec-

ommendation lists, and forward them to the MIIT. The MIIT usually publishes a proposed list between

August and October, followed by the final list in November or December. Figure 1 shows the accumulative

number of demonstration enterprises from 2011 to 2017, with an average of 71 enterprises being awarded

the title nationwide each year. Demonstration enterprises are required to undergo a re-evaluation every

three years, and those that no longer meet the criteria lose this title. Between 2014 and 2017, an average

of only 0.75 enterprises failed the re-evaluation annually, resulting in an average passing rate of 99.2%. 3

Based on the requirements outlined in the policy documents, the certification process and subsequent

subsidy policies can be summarized by the following three characteristics.4 First, the policy establishes

minimum standards for the size and status of the applicant enterprises, ensuring that only those with a

certain number of years in operation, scale of production, and innovation output are initially eligible. For

instance, one of the basic requirements stipulated in the policy is that applying enterprises must “have a

certain scale of production and operation, with more than 300 employees, annual sales revenue exceed-

ing 30 million CNY, and total assets greater than 40 million CNY.” Additionally, the policy requires that

enterprises possess innovation-related titles at the provincial level or above when submitting their appli-

1This document is available at https://www.miit.gov.cn/gyhxxhb/jgsj/kjs/wzpz/ztzl/gjjscxsfqy/tzgg/art/2020/
art_1cd6b9bf44444bedb642f08a52f3eaba.html (accessed February 2025).

2A few enterprises governed by the central government submit their application materials directly to the MIIT.
3A detailed summary of the number of certified enterprises, re-evaluated enterprises, and pass rate is provided in the Appendix

Table A.1.
4Further details and background on the policy can be found in the Appendix.
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Figure 1: Accumulated number of demonstration enterprises by year

Notes: This figure presents the accumulated number of demonstration enterprises by year from 2011 to 2017. From
2011 to 2013, the accumulated number is the sum of newly certified enterprises in all preceding years. In 2014,
demonstration enterprises certified in 2011 underwent their first re-evaluation, a process that continued annually
for subsequent cohorts over the following years. Consequently, from 2014 to 2017, the accumulated number reflects
the sum of newly certified enterprises in all preceding years, adjusted by subtracting the number of enterprises that
failed the re-evaluation and consequently lost the policy title.

cations. As a result, the policy prevents small and medium-sized enterprises, as well as startups, from

qualifying for the demonstration enterprise title to a significant extent.

Second, during the annual certification process, the government places a strong emphasis on specific

financial indicators and innovation output from the previous year. Enterprises are required to submit

detailed materials to the government, including reports on key financial indicators (such as total assets,

main business income, total profit, and market share of major products), R&D investment, and the num-

ber of patent applications filed in the last year. Local governments conduct a preliminary review, complete

a “recommended enterprise summary table,” and forward it to the MIIT along with the materials submit-

ted by the enterprises. In addition to the enterprise name, the summary table includes information on

the type and industry of the enterprise, as well as details on R&D investment, main business revenue, new

product sales revenue, and the number of patent applications for each recommended enterprise. Given

that the number of enterprises awarded the demonstration enterprise title is small each year, it is typically

“star enterprises” with outstanding business performance and significant patent output that are granted

the policy title.5

Third, once enterprises are granted the policy title, both central and local governments commit to

providing innovation support to the demonstration enterprises. The policy document stipulates that “the

MIIT shall provide guidance and support to the demonstration enterprises in industrial technological in-

novation.” Local-level policy documents further elaborate on this commitment. For instance, the policy

document from Chongqing, released in October 2014, specifies that “the Municipal Economy and Infor-

5In the Appendix, I analyze the number of patents, R&D expenditures, and total assets of the listed demonstration enterprises
in the year preceding their application and calculate their rankings among all listed firms in the corresponding industries within
their respective provinces. I find that the average ranking for each variable falls between the 70th and 80th quartiles. In industries
where there are no more than three listed demonstration enterprises nationwide, the average ranking of demonstration enterprises
in terms of invention patent applications approaches the 85th percentile, and their average ranking in R&D investment reaches the
87th percentile. Given that listed companies generally have larger production scales, R&D expenditures, and productivity levels
compared to the broader enterprises population, this observation supports the conclusion that demonstration enterprises are clear
leaders in their respective local markets.
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mation Commission and the Municipal Bureau of Finance shall prioritize support for the technological

innovation of demonstration enterprises, offering preferential funding for innovation projects of these en-

terprises through municipal industrial revitalization special funds.”6 Additionally, the title of demonstra-

tion enterprise, as an intangible asset, provides enterprises with enhanced access to financing facilities.7

Taken together, in this paper, I treat the NTIDE policy as a mechanism for certifying and subsidizing

“innovation star firms.”

3 Theoretical framework

In this section, I develop a theoretical framework to analyze the impact of the NTIDE policy on the dynam-

ics of innovation competition among firms. The framework is simplified to focus on a two-period price

game and innovation competition between a leading firm and other incumbents or potential entrants,

where the latter is represented by a single representative firm for tractability. First, I model the R&D ex-

penditure decision of the monopolistic leading firm in response to government innovation subsidies dur-

ing the first period, with the objective of maximizing its total profits over the two periods. Subsequently, I

model the R&D expenditure decision of the representative competitor firm in the first period, which de-

termines its productivity distribution in the second period. If the competitor achieves higher productivity

than the leading firm in the second period, it enters the market and captures the monopolistic profits.

To begin, consider an economy composed of multiple industries, indexed by i ∈ I , and a single final

goods sector characterized by a Dixit–Stiglitz aggregator with a constant elasticity of substitution η > 1.

The production of the final good is expressed as:

Yt =
( ∑

i∈I

Y
η−1
η

i ,t

) η
η−1

, (1)

where Yi ,t represents the output of goods in industry i in period t . The CES aggregation structure implies

that the total demand faced by firms in industry i is given by:

Yi ,t =
(

Pi ,t

Pt

)−η
Yt , (2)

where Pi ,t denotes the price of goods produced in industry i , and Pt ≡
(∑

i∈I P 1−η
i ,t

)1/(1−η)
is the aggre-

gated price index.

Assume that goods produced by different firms within the same sector are perfect substitutes. Firms

within each sector are heterogeneous in productivity and compete on prices to capture market share.

Following the framework proposed by Akcigit et al. (2023), I adopt the assumption of a two-stage pric-

ing game in each period. In the first stage, firms decide whether to pay an arbitrarily small entry fee to

participate in price competition in the second stage. In the second stage, only those firms that have paid

the fee compete by setting prices. This assumption ensures that only the leading firmthe one with the

6This document is available at https://www.miit.gov.cn/gyhxxhb/jgsj/kjs/wzpz/ztzl/gjjscxsfqy/dfwj/art/2020/
art_7a52a81b572f462aab00db3735240142.html (accessed February 2025).

7Although there are no definitive statistics detailing the strength of the policy’s benefits or the effectiveness of its implementa-
tion, some local media reports offer insights into the policy’s impact. For example, a report by Shanxi Daily on February 20, 2023,
mentioned that “In 2022, China Merchants Bank granted a total of 4.56 billion CNY in credit to 37 technological innovation demon-
stration enterprises and provided 3.07 billion CNY in financial support.” The report also highlighted that the Provincial Department
of Industry and Information Technology would provide comprehensive and multi-level support to these enterprises, including in-
dustrial policy assistance, technological reform funds, industry–finance integration, and production–demand cooperation. This
reflects the local governments’ policy intention to foster the development of local industries by supporting technology innovation
enterprises.
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highest productivitypays the fee, proceeds to the second stage, and ultimately sets the monopoly price.

Accordingly, the subscript i is also used to denote the sole firm in industry i .

Firm i ’s production technology is characterized by a constant-returns-to-scale Cobb–Douglas pro-

duction function:

Yi ,t = Ai ,t K α
i ,t L1−α

i ,t , (3)

where α ∈ (0,1), Ki ,t represents capital input, Li ,t represents labor input, and Ai ,t denotes the productivity

level. Given the assumption of constant returns to scale, it can be proved that the unit cost of product for

firm i is constant and given by

Ci ,t =
α−α (1−α)α−1 rα

t w1−α
t

Ai ,t
, (4)

where rt and wt are the exogenous prices of capital and labor, respectively. Let Ct ≡α−α (1−α)α−1 rα
t w1−α

t .

The unit cost Ci ,t = Ct /Ai ,t is thus determined by firm i ’s productivity and an exogenous term. Conse-

quently, the profit of firm i in period t is

πi ,t = Pi ,t Yi ,t −Ci ,t Yi ,t . (5)

Using Equations (2) and (5), the profit maximization problem yields the optimal price and maximum

profit. The latter is given by

π∗
i ,t = Π̃t Aη−1

i ,t , (6)

where Π̃t ≡ η−η
(
η−1

)η−1 Yt Pη
t C 1−η

t represents a combination of all macroeconomic factors. This for-

mulation underscores a monotonic relationship between productivity and profits: firms endowed with

higher productivity levels (Ai ,t ) achieve greater equilibrium profits.

In the two-period model, the leading firm in period t allocates a portion of its profit on R&D activities

to enhance its productivity and, consequently, its profit in period t+1. The resulting productivity in period

t +1 is given by

Ai ,t+1 = (1+λ) Ai ,t , (7)

where λ ≥ 0 denotes the productivity growth rate. This growth rate is non-negative, as the leading firm

retains the option to revert to the old technology in the event of unsuccessful innovation. To capture

the inherent uncertainty of innovation, I assume that λ is drawn from a distribution Fλ

(
x | Ii ,t

)
, where

Ii ,t represents the firm’s total R&D expenditure in period t . It is natural to assume that for any I 1
i ,t > I 0

i ,t ,

λ | I 1
i ,t first-order stochastically dominates λ | I 0

i ,t . This assumption reflects the intuitive notion that higher

R&D expenditure increases the probability of a larger draw of productivity in the second period. The

leading firm’s total R&D expenditure includes private R&D investments Ri ,t and exogenous government-

provided innovation subsidies Si ,t . Following the extensive literature suggesting that public funding does

not entirely crowd out private R&D investments (e.g., Feldman and Kelley, 2006; Falk, 2007; Pallante et al.,

2023), I assume that total R&D expenditure is a CES aggregation of private R&D investments and subsidies,

expressed as:

Ii ,t =
(
R

σ−1
σ

i ,t +S
σ−1
σ

i ,t

) σ
σ−1

, (8)

where σ > 0 captures the degree of substitutability between private R&D investments and subsidies. In

the limit as σ→∞, Ii ,t = Ri ,t +Si ,t , representing the case where they are perfectly substitutable.

Suppose firms are risk-neutral and denote the discount rate as β ∈ (0,1). The leading firm’s inter-

temporal profit maximization problem involves selecting the optimal level of private R&D investments to
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maximize its total expected discounted profit. This maximization problem can be expressed as:

max
Ri ,t

Πi = E

[
π∗

i ,t −Ri ,t + 1

1+β
π∗

i ,t+1 | Ii ,t

]
= Π̃t Aη−1

i ,t −Ri ,t + 1

1+β
Π̃t+1 Aη−1

i ,t E
[
(1+λ)η−1 | Ii ,t

]
.

(9)

Solving this maximization problem necessitates the specification of E
[
(1+λ)η−1 | Ii ,t

]
. Here, I adopt a

logarithmic assumption, assuming that this expectation value is

E
[
(1+λ)η−1 | Ii ,t

]= τ ln Ii ,t , (10)

where τ> 0 is a parameter controlling for the measurement units. This assumption implies that expected

productivity increases with higher R&D expenditure, while the marginal gains diminish. Based on this,

the following two propositions can be derived (see the Appendix for proofs):

Proposition 1. As government-provided innovation subsidies to the leading firm increase, the direction of

the change in its private R&D investments depends on the degree of substitutability between private R&D

investments and subsidies σ.

Proposition 2. As government-provided innovation subsidies to the leading firm increase, its total R&D

expenditure rises, regardless of the value of σ.

Subsequently, for analytical tractability, I model other competitor firms as a representative firm and

analyze its decision regarding R&D expenditure in response to the NTIDE policy. It is common knowl-

edge that the leading firm received higher innovation subsidies in the first period. Consequently, the

representative firm anticipates a rightward shift in the productivity distribution of the leading firm in the

subsequent period. The representative firm’s optimization problem involves maximizing its profits by

determining the optimal level of R&D investments.

Let the R&D investments of the representative firm in the first period is Ro,t , which brings a new tech-

nology in the second period. Suppose that the derived productivity Ao,t+1 is drawn from a distribution

FA
(
x | Ro,t

)
, where for any R1

o,t > R0
o,t , Ao,t+1 | R1

o,t first-order stochastically dominates Ao,t+1 | R0
o,t . To

simplify the subsequent analysis, two additional assumptions are imposed on FA
(
x | Ro,t

)
. First, the prob-

ability density is unimodal, a property implicitly adopted in many studies where researchers employ log-

normal or Fréchet distributions to model productivity distributions. Second, an increases in Ro,t shifts

the productivity density to the right without altering its shape; in other words, Ro,t affects the first-order

moment of the distribution but leaves higher-order moments unchanged. This two assumptions are used

to ensure that ∂2 f A
(
x | Ro,t

)
/
(
∂Ro,t∂x

)
only has one zero point, a property used in the proof of Proposition

3.

If this productivity exceeds the leader’s productivity (1+λ) Ai ,t , the representative firm enters the mar-

ket and capture the entire market share originally held by the leader firm. Otherwise, it refrains from

entering the market and receives no payoffs. Accordingly, given the realization of productivity is x, the

probability that it enters the market is Pr{x > (1+λ) Ai ,t } = Fλ

(
x/Ai ,t −1 | Ii ,t

)
. Based on Equation (6), the

expected profits is given by

Πo =−Ro,t + 1

1+β

∫∞

0
Fλ

(
x

Ai ,t
−1 | Ii ,t

)
Π̃t+1xη−1dFA

(
x | Ro,t

)
. (11)

Denote the integral in Equation (11) as δ
(
Ro,t , Ii ,t

)
, which represents the expected payoffs of the rep-

resentative firm. Given that FA
(
x | Ro,t

)
exhibits first-order stochastic dominance with respect to Ro,t

8



and the integrand is strictly increasing in x, it follows that ∂δ
(
Ro,t , Ii ,t

)
/∂Ro,t > 0. To ensure the exis-

tence and uniqueness of the solution to the first-order condition, I further impose the Inada conditions

to this integral. Specifically, I assume that ∂2δ
(
Ro,t , Ii ,t

)
/∂R2

o,t < 0, limRo,t→0∂δ
(
Ro,t , Ii ,t

)
/∂Ro,t =∞, and

limRo,t→∞∂δ
(
Ro,t , Ii ,t

)
/∂Ro,t = 0. Under these assumptions, the following proposition can be derived (see

the Appendix for proof):

Proposition 3. As government-provided innovation subsidies to the leading firm increase, firms exhibiting

larger productivity lag relative to the leading firm will decrease their total R&D expenditure, thereby leading

to a decline in their probability of firm entry.

Taken together, this theoretical model suggests that the NTIDE policy, which subsidizes leading firms

without reducing subsidies to other firms, increases the total R&D expenditure of the leading firm but

reduces the R&D expenditure of other firms and the entry of new firms.

4 Firm dynamics: How the policy works and how enterprises react?

This section examining the propositions suggested by the theoretical framework by exploring different

firm dynamics, including the policy effects on government-provided R&D subsidies and R&D expenditure

of demonstration enterprises and other incumbent competitors, as well as firm entries.

4.1 Policy effects on subsidies and R&D expenditures

The primary challenge in identifying firm-level treatment effects lies in finding the appropriate control

group for the treated firms. To address this, I restrict the sample to listed firms during 2008 to 2018, as

this ensures accessibility to a wide range of financial and innovation indicators. I then employ a match-

ing strategy based on specific financial and innovation indicators that are emphasized in the certification

process of the NTIDE policy. This approach aims to identify a control group of firms that exhibit compa-

rable levels of competitiveness in pursuing the policy title relative to treated firms, thereby constructing a

more credible counterfactual.8

I first obtain the announcements of certified demonstration enterprises over the years from the offi-

cial website of the Ministry of Industry and Information Technology (MIIT), which provides the name and

province of each firm. The list of firm names is then matched with a comprehensive business registration

record database provided by the commercial database “Tianyancha” (https://www.tianyancha.com)

to identify the city and industry of each demonstration enterprise.9 Since the firms are certified and pub-

licized in November or December, I consider them to be first treated in the year immediately following the

certification year. Consequently, as my sample spans from 2008 to 2018, this study includes seven batches

of demonstration enterprises certified from 2011 to 2017 and treated from 2012 to 2018.

Subsequently, I obtain financial and innovation indicators of listed firms from two databases: the

China Stock Market & Accounting Research Database (CSMAR, https://data.csmar.com/) and the

Chinese Research Data Services Platform (CNRDS, https://www.cnrds.com). All demonstration en-

terprises are matched with these databases, retaining 212 listed firms out of the 494 demonstration enter-

8Inspired by the approach of Greenstone et al. (2010) in which “winners” and “runner-up losers” are compared for identification,
a more ideal control group would consist of firms that are recommended by local governments but ultimately not certified by the
central government. Moreover, another potential method is to use province-level demonstration enterprises as the control group,
as the province-level title is typically a prerequisite for firms to be recommended by local governments. Unfortunately, these two
methods are infeasible in practice, as local governments seldom publicize the recommended list or the list of province-level title
holders.

9In China, the industrial classification system follows the Industrial Classification for National Economic Activities (GB/T 4754-
2017), which organizes industries into a hierarchical structure with four levels: 20 sectors (menlei), 97 divisions (dalei), 473 groups
(zhonglei), and 1,382 classes (xiaolei). In this study, industries refer to the 97 divisions (dalei).

9
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prises. Based on the city and industry of each demonstration enterprise, listed firms that are in the same

city and industry but did not receive the policy title are identified as local competitor firms. This yields

two groups of firms influenced by the policy: one treatment group consists of demonstration enterprises

directly affected by the policy, and the other treatment group consists of local competitors of the demon-

stration enterprises, which, according to the theoretical model, may experience negative effects due to

the alteration of innovation competition resulting from the policy.

To ensure comparability between the treatment and control groups in the identification, I first exclude

firms that did not file any patent applications in the first sample year (i.e., 2008) and firms with missing

data during the sample period, resulting in a balanced panel dataset. Next, I employ propensity score

matching (PSM) within each “stack” (explained in detail later) to identify the four nearest control group

firms for each treated firm in the year immediately preceding the application. The covariates used in

the PSM include the number of patent applications, main business revenue, R&D investment, industry,

and government-provided R&D subsidies in the year prior to the application. The first four variables are

key indicators highlighted in the summary table of recommended enterprises submitted to the central

government by local governments (see Appendix Table A.3), while the last variable serves as a proxy for

potential political connections.

To address staggered treatment adoption across cohorts, I employ the stacked difference-in-differences

(stacked DD) estimator (also see in Deshpande and Li (2019) and Johnson et al. (2023)). This approach

involves constructing a separate quasi-experimental design (referred to as a “stack”) for each treatment

cohort by pooling observations from the treated group with all never-treated samples. The seven stacks—

one for each cohort—are subsequently combined into a unified dataset. The empirical specification is

estimated as follows:

y f ,i ,t ,s =β× 1 {Tr eated} f ,t +X 2008
f

′
λt ,sγ+η f ,s +ρi ,t ,s +ε f ,i ,t ,s , (12)

where the subscript f , i , t , and s refer to firm, industry, year, and stack, respectively. When examining the

policy effects on demonstration enterprises, 1 {Tr eated} f ,t takes the value of 1 if firm f holds the policy

title in year t . Conversely, when evaluating the policy effects on competitor firms, 1 {Tr eated} f ,t equals

1 if there is at least one demonstration enterprise in the same city and industry as non-demonstration

enterprise f in year t . The vector X 2008
f

′
represents firm f ’s characteristics in the initial sample year (i.e.,

2008), including the logarithm of total assets, return on assets, and the logarithm of operating revenue.

To avoid the issue of “bad control variables”—where control variables themselves may be influenced by

the treatment—I interact this vector with stack-specific year fixed effects λt ,s (Lu et al., 2019; Xu, 2022).

Additionally, η f ,s represents stack-specific firm fixed effects, ρi ,t ,s denotes stack-specific industry–year

interactive fixed effects, and ε f ,i ,t ,s is the error term. In this model, the coefficient β can be interpreted as

a weighted average of the seven average treatment effects estimated for each stack. Standard errors are

clustered at the firm level.

Furthermore, the following event-study specification is estimated to examine pre-trends and investi-

gate the dynamic effects of the policy:

y f ,i ,t ,s =
6∑

m=−4
βm × 1

{
Tr eatment g r oup

}
f × 1

{
T R = m

}
t ,s +X 2008

f
′
λt ,sγ+η f ,s +ρi ,t ,s +ε f ,i ,t ,s , (13)

where 1
{
T R = m

}
t ,s represents a dummy variable that captures the relative timing of the policy treatment.

This variable is contingent on both the absolute time period t and the treatment timing specific to the

corresponding stack. The fourth period prior to the treatment and all earlier periods are aggregated into

a single period, while the sixth period following the treatment and all subsequent periods are similarly
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consolidated. The reference period is the year immediately preceding the treatment year within each

stack.

4.1.1 Subsidies

I first estimate the policy effects on firms’ government-provided R&D subsidies. On one hand, the analysis

for demonstration enterprises evaluates whether the government’s commitment to providing R&D subsi-

dies following certification is effectively implemented. On the other hand, if the policy leads to an increase

in R&D subsidies for demonstration enterprises, examining changes in subsidies for their local competi-

tors allows for testing a key competitive hypothesis in this section: the government may reallocate R&D

subsidies by reducing subsidies for other local firms, thereby diminishing their total R&D expenditures.

This channel introduces confounding influences that diverge from the competitive effects outlined in the

theoretical model.

To calculate the amount of R&D subsidies received by listed firms each year, the CSMAR database pro-

vides information on government grants from each listed firm’s notes to the financial statements, which

includes the amount and a brief description of each government subsidy. I then define eight innovation-

related keywords and check whether the description contains one of them.10 Using this method, I identify

29.1% of the subsidies as R&D subsidies and calculate the annual R&D subsidies received by each listed

firm.

Figure 2 presents the estimation results from the event study analysis. The figure demonstrates that,

prior to the implementation of the policy, both demonstration enterprises and competitor firms exhibited

trends consistent with those of the control group, suggesting the absence of pre-existing trends. Following

the policy treatment, the R&D subsidies received by demonstration enterprises display a clear upward

trend. However, the subsidies received by competitor firms do not exhibit a declining trend; in fact, they

show a slight increase in the fourth and fifth years post-treatment. This finding indicates that the NTIDE

policy provides additional subsidies to leading firms without reducing the subsidies allocated to other

firms.

The estimation results of Equation (12), with the dependent variable being the logarithm of R&D sub-

sidies, are reported in Table A.3. A consistent pattern is observed in the results. On average, the policy

increases the government subsidies received by demonstration enterprises by 47.4% and does not reduce

subsidies for competitor firms; in fact, positive point estimates are derived for these firms.

4.1.2 R&D expenditures

Next, I investigate the policy effects on firms’ R&D expenditures. Figure 3 demonstrates significantly di-

vergent trajectories for demonstration enterprises and competitor firms. The NTIDE policy incentivizes

demonstration enterprises to enhance their investments in R&D activities. Conversely, it appears to dis-

courage competitor firms from engaging in innovation, as evidenced by the persistent negative effects

depicted in the figure, despite the absence of a reduction in their resource allocations. This finding is

consistent with the discouraging effects anticipated by the theoretical framework.

Estimation results from the stacked DD estimator, as detailed in Appendix Table A.4, suggests that

the NTIDE policy encourages demonstration enterprises to increase their R&D expenditure by 30%. This

helps clarify the substitutive or complementary relationship between government subsidies and private

R&D expenditures. On average, the R&D subsidies received by demonstration enterprises accounted for

13.2% of their total R&D expenditures. Assuming this proportion remains unchanged and simplifying

10The eight keywords are “innovation (chuangxin),” “research (yanjiu),” “R&D (yanfa),” “scientific research (keyan),” “patent
(zhuanli),” “talent (rencai),” “technology (keji),” and “technical (jishu).”
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Stacked DD coef. for demonstration enterprises: 0.474 (s.e. = 0.176)

Stacked DD coef. for competitor firms: 0.034 (s.e. = 0.156)
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Figure 2: Event study of R&D subsidies

Notes: This figure presents the estimated coefficients obtained from the event study on government-provided R&D
subsidies of demonstration enterprises and competitors firms located in the same city and industry as the demon-
stration enterprises. The circles represent the point estimates, and the lines indicate the 95% confidence intervals.
The figure also reports the average treatment effects for the two treatment groups, calculated from the estimation of
Equation (12). Additional details of the stacked DD estimates are provided in Appendix Table A.3.

total R&D expenditures as the sum of R&D subsidies and private investment, the policy effects of 47.4%

increase in R&D subsidies and 30% increase in R&D expenditures implies that the policy encourages a

27.4% increase in private investment. Therefore, government R&D subsidies not only did not crowd out

private R&D investment but also encouraged demonstration enterprises to undertake more, indicating a

complementary relationship between the two.

On the contrary, the NTIDE policy may result in a 13.3% reduction in the total R&D expenditures

of competitor firms, although this effect lacks statistical significance. This point estimate is somewhat

smaller than that observed for demonstration enterprises. However, given that the number of demonstra-

tion enterprises in each city and industry rarely exceeds one, while there are multiple listed firms acting

as competitors, this finding implies the potential for negative overall effects.

It is crucial to emphasize that the theoretical model anticipates heterogeneous responses among com-

petitor firms. Specifically, competitor firms with a larger productivity gap are expected to face diminished

incentives for R&D investment, as they anticipated future productivity advancements of the leading firm.

Conversely, the responses of competitor firms with a smaller productivity gap remain theoretically inde-

terminate. In other words, the competitive effect is inherently heterogeneous across markets with dif-

ferent productivity distributions. As a result, the above estimates is essentially an average of treatment

effects across different market structures.

To uncover this heterogeneity, I estimate the annual total factor productivity (TFP) for each listed firm

using the methodology proposed by Olley and Pakes (1996), thereby deriving the TFP distribution of listed

firm for each city–industry pair in which the demonstration enterprises are located. Subsequently, I cal-

culate the Gini coefficient of each distribution to quantify the degree of productivity dispersion among

firms. A higher Gini coefficient signifies that a larger proportion of firms lag behind the technological
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Stacked DD coef. for demonstration enterprises: 0.300 (s.e. = 0.095)

Stacked DD coef. for competitor firms: -0.133 (s.e. = 0.097)
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Figure 3: Event study of R&D expenditures

Notes: This figure presents the estimated coefficients obtained from the event study on R&D expenditures of demon-
stration enterprises and competitor firms located in the same city and industry as the demonstration enterprises. The
circles represent the point estimates, and the lines indicate the 95% confidence intervals. The figure also reports the
average treatment effects for the two treatment groups, calculated from the estimation of Equation (12). Additional
details of the stacked DD estimates are provided in Appendix Table A.4.

frontier within their respective local markets. Using this measure, I categorize competitor firms into two

distinct groups: those operating in markets with the top 25% degree of productivity dispersion and those

in markets with lower levels of dispersion. Based on this, I conduct event studies for each group to exam-

ine the heterogeneity in their responses.

Figure 4 presents the results of the event study. The two groups of competitor firms exhibit divergent

trends following the treatment: the R&D expenditures of competitor firms in markets with less dispersed

productivity distributions show almost no change, whereas those in markets with greater productivity

dispersion experience a significant decline in R&D expenditures by 39.2%. This finding suggests that the

reduction in R&D expenditures among competitor firms is primarily driven by firms that are further from

the productivity frontier, a result that aligns with the theoretical prediction.11

4.2 Policy effects on firm entries

This subsection shifts attention to investigating the effects on potential entrants. In the theoretical model,

a reduction in firms’ R&D investment implies a lower likelihood of new firms entering the market and

competing for the market share of leading firms. Consequently, it is expected that the NTIDE policy will

have a negative impact on new firm entry.

To examine the impact on firm entry, firm-level data must be aggregated to a higher level of analysis.

To achieve this, I construct a city–industry panel dataset to investigate changes in the number of new

firm entries following the emergence of a demonstration enterprise within a specific city–industry pair.

11To confirm that this trend is not attributable to changes in government R&D subsidies for the two groups, Appendix Figure A.6
displays the event study graphs for the policy R&D subsidies received by the two groups of competitor firms. The estimation results
reveal no significant change in government R&D subsidies for either group.
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Stacked DD coef. in the market with more dispersed productivity distribution: -0.392 (s.e. = 0.198)
Stacked DD coef. in the market with less dispersed productivity distribution: -0.011 (s.e. = 0.129)
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Figure 4: Event study of R&D expenditures by TFP distribution

Notes: This figure presents the estimated coefficients obtained from the event study on R&D expenditures of two
groups of competitor firms: those operating in markets with the top 25% degree of productivity dispersion, as mea-
sured by the Gini coefficient of the TFP distribution of listed firms, and those in markets with lower levels of disper-
sion. The circles denote the point estimates, while the lines represent the 95% confidence intervals. Additionally, the
figure reports the average treatment effects for the two treatment groups, computed from the estimation of Equation
(12). Further details regarding the stacked difference-in-differences (DD) estimates are provided in Appendix Table
A.5.
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Utilizing the business registration record database provided by “Tianyancha,” I identify newly established

private firms, foreign firms, and public firms (including state-owned and collectively owned enterprises)

in each year based on their establishment dates and firm types. These firms are subsequently aggregated

to the city–industry level according to their respective industries and locations.

For identification, I again employ the stacked DD method. Based on the timing of the first demonstra-

tion enterprise’s emergence in each city–industry pair, the sample is divided into seven treatment cohorts

(with treatment years ranging from 2012 to 2018). City–industry pairs that did not have any demonstra-

tion enterprises before 2018 serve as the control group. Consistent with the approach used to construct

the firm-level dataset, each treatment cohort is matched with all control groups, creating seven stacks.

These stacks are then merged into a single dataset. The dataset covers 337 cities and 97 industries, with a

sample period spanning from 2008 to 2018. The estimation model is specified as follows:

lnEntr yc,i ,t ,s =β× 1{Tr eated}c,i ,t +ηc,i ,s +ρi ,t ,s +γc,t ,s +εc,i ,t ,s , (14)

where the subscripts c, i , t , and s represent city, industry, year, and the stack, respectively. lnEntr yc,i ,t ,s

denotes the logarithm of the number of new firm entries in industry i of city c in year t . The variable

1{Tr eated}c,i ,t takes the value of 1 for all years after the first demonstration enterprise emerges in in-

dustry i of city c. The term ηc,i ,s represents stack-specific city–industry fixed effects, which control for

time-invariant differences between treatment and control groups. ρi ,t ,s denotes stack-specific industry–

year fixed effects, primarily used to control for industry-level heterogeneity. For example, the wholesale

industry has the highest average annual number of firm entries, but firms in this industry are less likely to

engage in innovation and thus are less likely to be designated as demonstration enterprises (see Figure A.4

in the Appendix). Additionally, γc,t ,s represents stack-specific city–year fixed effects, which are included

to account for city-level innovation policies.12 Finally, εc,i ,t ,s is the error term. To account for spatial and

industry correlations, standard errors are two-way clustered at the city and industry levels.

Table 1 reports the estimated results regarding the entry of private and foreign firms. In columns (1)

and (3), I first estimate a simplified specification, which excludes stack-specific city–industry fixed effects

and year fixed effects. Columns (2) and (4), on the other hand, present the results from the full specifi-

cation of Equation (14). After controlling for heterogeneity at the city and industry levels, the absolute

magnitude of the estimated coefficients decreases significantly, but they remain statistically significant.

These results are consistent with theoretical expectations: when a leading firm in a city–industry pair re-

ceives subsidies, it discourages the entry of private and foreign firms, leading to an average reduction of

5.1% in the number of private firm entries and 14% in the number of foreign firm entries.

It is evident that the sample sizes in columns (3) and (4) are significantly smaller than those in the

first two columns. This discrepancy arises because many city–industry pairs in certain years experienced

no foreign firm entry, and these observations are automatically excluded when the dependent variable

is logged. In contrast, due to the large number of private firm entries across years, such cases are rare.

Since this study focuses on the policy’s impact on the intensive margin (i.e., changes in the number of

firm entries) rather than the extensive margin (i.e., transitions from no entry to entry or vice versa), drop-

ping samples with a dependent variable of zero is a straightforward approach (Chen and Roth, 2024).

12For instance, in the certification process for province-level demonstration enterprises in Jiangsu Province, firms are recom-
mended by city-level governments to the provincial government. According to relevant policy documents in Jiangsu Province, “each
city can recommend no more than 5 firms, while innovative cities (such as Suzhou, Nanjing, Wuxi, and Changzhou) can recommend
up to 8 firms.” As a result, the “innovative city” title, a city-level innovation policy, increases the likelihood of provincial-level demon-
stration enterprises emerging in these cities. Since provincial-level demonstration enterprises are often a prerequisite for applying
for national title, this policy also raises the probability of national-level demonstration enterprises appearing in these cities. At the
same time, such city-level innovation policies may influence firm entry, making them a potential confounding factor in identifica-
tion.
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However, given the potential risk of significant sample size reduction, I re-estimate the regression model

using Poisson Pseudo Maximum Likelihood (PPML). The results, reported in Appendix Table A.7, provides

consistent findings.

Table 1: Policy effects on firm entries

Logarithm of the number of firm entries

Private firm Foreign firm

(1) (2) (3) (4)

Treated -0.329*** -0.059* -0.212*** -0.138***
(0.081) (0.030) (0.078) (0.047)

City FEs × Industry FEs × Stack FEs Yes Yes Yes Yes
Year FEs × Stack FEs Yes No Yes No
Industry FEs × Year FEs × Stack FEs No Yes No Yes
City FEs × Year FEs × Stack FEs No Yes No Yes
# of clusters: city 337 337 326 301
# of clusters: industry 89 89 87 85
# of observations 1,971,558 1,971,558 241,790 238,064

Notes: This table reports the treatment effects of the NTIDE policy on the logarithm of annual firm entries. Columns
(1) and (2) present the effects on private firms, while Columns (3) and (4) show the effects on foreign firms. Standard
errors, two-way clustered at the city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 5 presents the estimation results of the event study. As illustrated in the figure, there is a clear

downward trend in the entry of both private and foreign firms following the policy treatment. Prior to

the intervention, there are no notable pre-trends for private firms, but a somewhat downward pre-trend

is observed for foreign firms. Due to data limitations, it is not feasible to further control for confounding

factors at the city–industry level for foreign firm entries. Consequently, it implies that estimates regarding

foreign firm entry may be somewhat overstated and should be interpreted with caution.

In summary, the empirical evidence presented in this section corroborates the existence of the dis-

couraging effect posited by the theoretical model: policies that subsidize leading firms in local markets

may generate adverse spillover effects on other incumbent firms and potential entrants. First, the R&D

incentives of competing incumbent firms in the market are diminished, particularly in markets where a

significant number of firms lag behind the productivity frontier. Second, private firms anticipate reduced

potential returns from market entry, leading to a notable decline in private firm entry and a suppres-

sion of the creative destruction process. These spillover effects collectively indicate a negative impact

on aggregate innovation, rendering the overall effects of selective subsidy policies targeting leading firms

ambiguous.

5 Overall effects on innovation

In this section, I examine the overall effects of the NTIDE policy on innovation to reflect the relative dom-

inance of the direct and discouraging effects.

5.1 Baseline estimation

I employ the same identification strategy as in Section 4.2 to investigate changes in patent outputs fol-

lowing the emergence of the first demonstration enterprise in a given city and industry. To achieve this, it

is first necessary to aggregate patent counts by city and industry. I utilize micro-level patent application

data obtained from the China National Intellectual Property Administration, which includes information
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Figure 5: Event study of private and foreign firm entries

Notes: This figure shows the estimated coefficient in the event study for private firm entries and foreign firm entries,
respectively. Point estimates and 95% confidential intervals are shown in the graph.

such as each patent’s applicant, application date, publication date, primary International Patent Classi-

fication (IPC) code, and address. In most of the following analysis, I limit the focus to invention patents,

excluding utility model patents and design patents, as these are typically considered to reflect lower levels

of innovation.

Two steps are applied to identify each patent’s city and industry. First, the address information gen-

erally specifies the applicant’s location down to the sub-county level, including postal codes. Based on

the city names or postal codes in the address text, I identify the city associated with each patent. Sec-

ond, since the primary IPC code and industry classifications follow different systems, I utilize an official

matching table, provided by the China National Intellectual Property Administration, to map IPC codes

to industry categories.13 If a patent’s primary IPC code corresponds to multiple industry categories, each

relevant industry is counted as having one additional patent.14

It should be clarified that IPC codes are typically based on the fields in which patents are utilized.

Consequently, the approach adopted in this study assumes that the invention patents generated by firms

are primarily applied within their respective industries. Furthermore, out of the 97 industries examined,

only 54 can be matched with IPC codes, with these industries predominantly concentrated in manufac-

turing and supply sectors. The remaining 43 industries are not considered fields of patent application. As

a result, only the 54 industries have positive patent counts, while the others are automatically assigned a

value of zero. Therefore, in the subsequent empirical analysis, I restrict the sample to these 54 industries.

The 43 excluded industry categories can roughly be divided into two groups. The first group comprises

industries in which firms exhibit minimal engagement in research and innovation activities. Examples of

13This document is available at https://www.gov.cn/zhengce/zhengceku/2018-12/31/5443898/files/
74249b84a762440fbe0fa195a3c14e93.pdf (accessed February 2025).

14Theoretically, if one could identify the applicant—whether an individual, firm, or institution—for each patent, it would be pos-
sible to calculate patent counts based on the industries of the applicants. However, this approach is infeasible in practice due to
the lack of standardization in applicant names. This inconsistency results in a very low matching rate when attempting to align
applicant names with the business registration records dataset.
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such industries include transportation, social organizations, and certain service sectors. Notably, these

industries also feature a limited number of firms designated as demonstration enterprises. Consequently,

their exclusion from the analysis is justified.

The second group encompasses several industries characterized by a substantial number of firms ac-

tively engaged in research and innovation, as well as a significant presence of demonstration enterprises.

However, due to their unique nature, these industries cannot be matched with any IPC codes. A promi-

nent example is the “Research and Development” industry category. Among the seven batches of demon-

stration enterprises certified between 2011 and 2017, 28 firms belonged to this industry. Nevertheless, no

patents can be directly attributed to the this industry, as it does not align with any specific IPC codes. Con-

sequently, patents generated by firms in this industry are instead assigned to other relevant industries. If

a firm within such an industry in a given city is certified as a demonstration enterprise, it may influence

the patent counts of other local industries. However, as long as this influence is proportionally distributed

across industries, the issue can be effectively addressed by incorporating city-level time-varying fixed ef-

fects.

After matching patents to cities and industries, I aggregate patent counts by city and industry based

on the application years of the patents. Utilizing application years, rather than publication years, is a

common practice in the literature, as publication dates often exhibit significant delays relative to applica-

tion dates.15 Firms typically seek patent protection shortly after completing their R&D activities, making

application dates a more accurate indicator of the timing of their innovation efforts (Lerner and Seru,

2022).

Furthermore, to account for patent quality, I construct the citation network based on the citations

of each invention patent and subsequently calculate the number of times each invention patent is cited

by others within 3 or 5 years following its publication date. Referring to methodologies of Lanjouw and

Schankerman (2004) and Johnson et al. (2023), I use the number of citations as weights to calculate the

citation-weighted patent count for each city–industry pair, which simultaneously incorporates both the

quantity and quality of patents and serves as the core dependent variables in the subsequent analysis.16

Initially, I disregard potential inter-regional or inter-industry spillover effects and utilize all city–industry

pairs that did not have any demonstration enterprises prior to 2018 as the control group. This approach

relies on the assumption that such spillovers are negligible. If this assumption does not hold, the compari-

son not only introduces biases into the estimation but also fails to accurately capture the overall impact on

the economy as a whole. In the subsequent section, I further divide the control group pairs to investigate

spatial and inter-industry spillovers in innovation, where the findings reveal that both types of spillovers

are small in magnitude and statistically insignificant. As a result, while the analysis in this section pri-

marily pertains to the “local effects” of the policy, it also indicates the direction of the overall influence on

innovation at the national level. The estimation equation is specified as follows:

lnPatent sc,i ,t ,s =β× 1{Tr eated}c,i ,t +ηc,i ,s +ρi ,t ,s +γc,t ,s +εc,i ,t ,s , (15)

which is identical to Equation (14) except for the substitution of the dependent variable with the logarithm

of the number of patents. It is important to clarify that the industry–year fixed effects ρi ,t ,s additionally

15According to the Patent Law of the People’s Republic of China, upon receiving an invention patent application, the patent ad-
ministrative department of the State Council conducts a preliminary examination. If the application is determined to comply with
the provisions of the law, it will be published 18 months after the application date. The patent administrative department may, at
the request of the applicant, publish the application prior to the 18-month period.

16A related issue is that many patents applied for in recent years have not yet been published and are therefore not recorded in
the database. This results in a significant underestimation of patent application counts and citations in recent years (Lerner and
Seru, 2022). For this reason, I set the sample period cutoff at 2018, ensuring that the database contains invention patents during the
sample period as comprehensively as possible.
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control for heterogeneity in patent applications across industries. For instance, certain industries exhibit

significantly higher patent application volumes, rendering direct comparisons between industries inap-

propriate. Compared to studies that standardize the dependent variable within industries, this control is

more rigorous.

Additionally, I apply a logarithmic transformation to the dependent variable, which inherently ex-

cludes city–industry pairs with zero patents (or zero total citations) from the estimation.17 There are two

primary reasons for excluding these samples. First, since the treatment group consists of city–industry

pairs with innovation star firms that have received certification, their innovation output is theoretically

guaranteed to be positive. Removing non-innovator pairs from the control group is an effective approach

to enhancing the comparability between the treatment and control groups. Second, the nature of sub-

sidizing leading firms under this policy implies that its impact on innovation competition primarily in-

fluences innovation activities on the intensive margin rather than the extensive margin. In other words,

the policy affects the intensity of innovation activities within a city–industry pair rather than converting

non-innovator pairs into innovator pairs. Therefore, excluding non-innovators with zero patent output

aligns with the focus of this study.

Table 2 presents the estimation results, where the dependent variables are the raw counts of invention

patents, the number of invention patents weighted by citations within three years, and the number of

invention patents weighted by citations within five years, respectively. Columns (1), (3), and (5) adhere to

Equation (15), while Columns (2), (4), and (6) replace the core explanatory variable with the cumulative

stock of demonstration enterprises in each city–industry pair over time. This substitution is intended to

construct a continuous variable related to the treatment intensity.18

The table demonstrates consistent estimation results across different dependent and explanatory vari-

ables: the demonstration enterprise policy reduces the innovation output of city–industry pairs where

demonstration enterprises are located. This finding suggests that, on average, the negative effects on

competitor firms and potential entrants outweigh the positive effects on demonstration enterprises, re-

sulting in negative overall effects.

Moreover, given the observed consistency across various measures of innovation patents, the subse-

quent analysis primarily employs the 3-year weighted measure as the dependent variable. This approach

serves a dual purpose: it mitigates the limitations associated with the raw count measure, which overlooks

patent quality, and addresses the concern that longer forward citations rely on patents applied in more

recent years, which may be incomplete in the dataset.

The reliability of these estimates still faces the critical challenge of the comparability of the treatment

and control groups. Specifically, if a city–industry pair has a demonstration enterprise after 2011, it often

indicates that the city–industry pair has a relatively strong foundation for R&D and innovation. Appendix

Table A.11 shows that, in the first period of the sample (i.e., 2008), only 2.56% of the treatment group city–

industry pairs had zero invention patents, while 40.19% of the control group city–industry pairs had zero

invention patents. This raises a potential issue: since the total number of patent applications nationwide

generally increases year by year, the control group with few patents in the initial period also experiences

17I refrain from employing a commonly adopted method of applying a log-like transformation to the dependent variable, since
recent studies emphasize the potential of introducing significant estimation biases, particularly when extensive-margin effects are
substantial and cannot be disregarded. With log-like transformations, the estimated coefficients “can be made to take any desired
value through the appropriate choice of [the units of the dependent variable]” (Chen and Roth, 2024).

18It should be clarified that, for the treatment group, treatment intensity is not necessarily positively correlated with the number
of demonstration enterprises. This is because the discouraging effects resulting from the alteration of innovation competition due
to the policy do not necessarily increase or decrease with a greater number of subsidized leading firms. In Appendix Table A.8, I
preliminarily attempt to incorporate high-order polynomials into the specification, revealing a significant third-order relationship:
as the number of demonstration enterprises certified in a city–industry pair increases, the negative effects are initially alleviated but
eventually exacerbated. However, as the number of treatment pairs with more than one demonstration enterprise is quite limited
(see Appendix Table A.2), I acknowledge that there may be insufficient variation to accurately identify the true relationship.
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Table 2: Policy effects on patent output

Logarithm of the number of invention patents

Raw counts 3-year weighted 5-year weighted

(1) (2) (3) (4) (5) (6)

Treated -0.164*** -0.167*** -0.159***
(0.026) (0.026) (0.026)

# of demonstration enterprises -0.134*** -0.135*** -0.127***
(0.023) (0.024) (0.023)

City FEs × Ind. FEs × Stack FEs Yes Yes Yes Yes Yes Yes
Ind. FEs × Year FEs × Stack FEs Yes Yes Yes Yes Yes Yes
City FEs × Year FEs × Stack FEs Yes Yes Yes Yes Yes Yes
# of clusters: city 336 336 335 335 335 335
# of clusters: industry 54 54 54 54 54 54
# of observations 1,035,694 1,035,694 932,788 932,788 962,735 962,735

Notes: This table reports the treatment effects of the NTIDE policy on the logarithm of annual innovation patent
applications. Standard errors, two-way clustered at the city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.

a year-by-year increase in patent applications. When the initial base is small, the patent applications of

this control group will exhibit a large percentage growth in subsequent periods, leading to a natural pre-

existing trend of narrowing the gap between the treatment and control groups.

To address this issue, I impose increasingly stringent restrictions on the city–industry pairs included

in the estimation, requiring that their invention patent applications in 2008 exceed a specific threshold.

Figure 6 presents the estimation results under these varying constraints. As expected, the point estimates

of the coefficients gradually decline as the constraints become stricter; however, all estimates remain

negative and statistically significant. When the constraint reaches 50 or more, the sample size reduces to

approximately or less than 10% of the baseline estimation, and the point estimates stabilize, fluctuating

around -0.05. Across these estimations, a conservative quantitative conclusion can be drawn: the NTIDE

policy reduces the total patent output of the treated city–industry pairs by at least 4%.

The estimation of the event study is presented in Figure 7. In line with the preceding discussion,

the sample is restricted to city–industry pairs with invention patent applications in 2008 exceeding 50.19

Prior to the NTIDE policy intervention, no significant pre-trends are observed; however, following its im-

plementation, the treatment group exhibits increasingly negative effects.

Additionally, I conduct three robustness checks to further validate the reliability of these findings.

First, I separately estimate the treatment effects for seven treatment cohorts to examine whether the neg-

ative impact identified in the earlier estimates is driven by a specific cohort. Figure A.7 presents the esti-

mation results. With the exception of the 2018 cohort, which was treated in the final period of the sample,

the treatment effects for all other cohorts are negative and of comparable magnitude. Second, I analyze

city–industry pairs where the first demonstration enterprise was certified in 2019 as a placebo test. Given

the sample period cutoff of 2018, this treatment cohort is expected to exhibit no significant treatment

effect within the sample period. Table A.9 reports the estimation results of the event study, where all coef-

ficients are statistically insignificant, and fewer of them are negative compared to the treatment cohorts.

Third, as presented in Appendix Table A.10, the number of utility model patents is employed as an al-

ternative dependent variable. The estimation results similarly demonstrate a negative aggregate effect of

the demonstration enterprise policy, suggesting that the NTIDE policy also discourages innovation with a

focus on practical applicability.

19Consistent with the preceding discussion, utilizing the full sample in the estimation reveals a significant pre-trend, which grad-
ually diminishes as the constraints imposed on the sample become stricter and the treatment and control groups become more
comparable.
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Figure 6: Estimated coefficients with sample restriction on the number of patents in 2008

Notes: This figure presents the estimation results derived by applying varying constraints on the number of invention
patent applications in 2008 for each city–industry pair. The first row imposes no constraints, mirroring the results
reported in Column (3) of Table 5. The second to ninth rows restrict the estimation to city–industry pairs with inven-
tion patent applications in 2008 exceeding 0, 5, 10, 20, 50, 100, 200, and 300, respectively. The circles represent the
point estimates of the treatment variable coefficients, while the lines indicate the 90% confidence intervals. The point
estimates are displayed alongside the standard errors of the coefficients in parentheses. The square brackets report
the ratio of the sample size used in the regression to the sample size under no constraints (i.e., the first row).
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Figure 7: Treatment effects on patent outputs: event study

Notes: This figure presents the estimation of the event study on patent outputs. The sample is restricted to city–
industry pairs with invention patent applications in 2008 exceeding 50. The circles represent the point estimates,
while the lines indicate the 95% confidence intervals.

5.2 Heterogeneity

In this subsection, I estimate the heterogeneous treatment effects of the NTIDE policy and discuss poten-

tial determinants of the heterogeneity. I primarily focus on the heterogeneous average treatment effects

by industry, which can be separately estimated with samples corresponding to each industry. For industry

i , the estimation equation is as follows:

lnPatent i
c,t ,s =β× 1 {Tr eated}i

c,t +ηi
c,s +γi

pc ,t ,s +εi
c,t ,s . (16)

Since each estimation utilizes samples from a single industry, the analysis fundamentally relies on com-

parisons between cities with demonstration enterprises and those without any. Consequently, I replace

the time-varying city fixed effects with time-varying province fixed effects γi
pc ,t ,s .

Figure 8 presents the estimation results. To mitigate estimation biases arising from an insufficient

number of treatment pairs, only treatment effects of industries with more than 5 treated pairs are re-

ported.20 Throughout these estimates, more than two third industries exhibit negative point estimates,

consistent with the negative overall effects estimated above.21

The overall effects of the policy are an aggregation of the responses of various firms engaged in inno-

vation activities. Consequently, heterogeneity essentially arises from differences in the degree to which

various innovation agents respond. Building on the earlier analysis of the divergent impacts on subsi-

20The median number of treatment pairs across industries is 5.
21An observation worth noting is the absence of a significant correlation between the treatment effects and the number of treat-

ment pairs, as illustrated in Appendix Figure A.8. This finding helps to rule out the possibility that the observed heterogeneity arises
from diminishing positive marginal effects as the number of treatment pairs increases. This is indeed understandable, as demon-
stration enterprises are typically dispersed across cities. Furthermore, it is observed that in industries with more than 20 treatment
cities, the treatment effects are predominantly negative. This observation suggests that the NTIDE policy primarily generated un-
intended negative consequences in the industries on which it placed greater emphasis. Consequently, the overall effects, which
represent a weighted average of the heterogeneous treatment effects across industries, are negative.
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Figure 8: Treatment effects on patent outputs by industry

Notes: This figure illustrates the heterogeneous treatment effects by industry on patent outputs, weighted by 3-year-
forward citations. To mitigate significant estimation biases, only industries with more than 5 treatment city–industry
pairs are included in the analysis. The circles denote the point estimates, and the lines represent the 90% confidence
intervals.

dized leading firms, competitor firms, and new entrants, two potential determinants for the observed

heterogeneity emerge: market competition among incumbents and the rate of new firm entry. In mar-

kets with higher levels of competition and greater firm entry, follower firms and new entrants are likely to

play a more significant role in driving technological advancement. As a result, it is anticipated that more

discouraging effects will be observed for these firms when policies subsidize leading firms.

To test the first determinant, I measure the degree of market competition in each industry using the

Industrial Enterprise Database, employing the methodology proposed by De Loecker et al. (2020). This

approach measures monopoly levels through industry-average markups. The data used to calculate this

indicator are sourced from the Industrial Enterprise Database prior to the implementation of the NTIDE

policy to mitigate potential reverse causality. Figure 9 depicts the correlation between industry compe-

tition levels and the policy treatment effect, revealing a significant negative relationship. Specifically, in

industries with higher levels of competition, the negative aggregate effects of subsidizing leading firms

are more pronounced.

Another potential determinant is the entry of new firms. The rate of new firm entry reflects the degree

of creative destruction, wherein new firms enter the market and compete with incumbents for market

share. To explore this, I calculate the average annual number of new firms entering each industry follow-

ing the implementation of the NTIDE policy and examine its correlation with the policy treatment effect.

Figure 10 illustrates this relationship, revealing a significant negative correlation, suggesting that in indus-

tries characterized by active new firm entry, subsidies to leading firms generate larger negative spillover

effects.

In summary, this section provides evidence that the NTIDE policy generates negative overall effects on

innovation in the regions where it is implemented, as well as nationwide, as discussed in the subsequent

section. Combined with the divergence between the positive direct effects on subsidized leading firms
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Treatment effects = -0.238 × Market competition - 0.371
(s.e. = 0.057)
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Figure 9: Treatment effects and market competition

Notes: This figure depicts the correlation between treatment effects and the degree of market competition, measured
by the average mark-up in each industries before the policy implementation. The darker dashed line represents the
fitted line.

Treatment effects = -0.143 × ln(number of firm entry) + 0.637
(s.e. = 0.058)
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Figure 10: Treatment effects and firm entries

Notes: This figure depicts the correlation between treatment effects and the number of firm entries, measured by the
mean of annual new entries in each industries before the policy implementation. The darker dashed line represents
the fitted line.
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and the negative effects on competitor firms and potential entrants identified in the previous section,

the findings in this section are interpreted as evidence that the negative spillover effects outweigh the

direct positive effects. This interpretation is further supported by the observed heterogeneity, wherein

the negative overall effects are more pronounced in markets characterized by greater competition and

creative destruction. These results underscore the unintended consequences of the NTIDE policy, which

arise from its failure to account for the indirect effects by altering the innovation competition among

firms.

6 Spillover effects

6.1 Inter-industry and spatial spillovers in innovation

Industrial policies frequently generate spillover effects. Specifically, when the innovation output of treat-

ment city–industry pairs is altered due to the NTIDE policy, their productivity and the overall competi-

tiveness of the market may also be impacted. This could potentially lead to two types of spillover effects

on other regions or industries, which can

The first type is inter-industry spillovers. Given the input–output linkages and knowledge spillovers

across industries, the policy’s impact on innovation activities in one industry could induce a negative

productivity shock, which in turn influences innovation activities in other local industries through two

primary channels. First, the productivity shock may translate into a cost shock for other industries via

input–output linkages, thereby reducing their expected returns on R&D expenditures. Second, the adverse

effects of the policy on innovation could hinder inter-industry knowledge spillovers. Consequently, the

NTIDE policy may lead to negative inter-industry spillover effects.

The second type of spillover effects is spatial spillovers. On one hand, firms in the same industry

across different cities compete for the national market. Thus, the decrease in the innovation outputs

of the treatment group reduces their competitiveness and could increase the expected returns of R&D

investments for competitors in other cities, potentially encouraging firms in those cities to increase their

innovation activities. On the other hand, considering knowledge diffusion among regions, the treatment

cities could also negatively affect surrounding cities by reducing the intensity of new technology diffusion.

Taken together, the NTIDE policy theoretically has the potential to exhibit positive spatial spillover effects.

To identify these spillover effects, I reclassify all control group city–industry pairs into four sub-groups:

1. Pure control group: City–industry pairs that differ from the industries and cities of all demonstra-

tion enterprises. Based on the analysis above, these control group samples theoretically should not

experience any spillover effects.

2. Inter-industry spillover control group: City–industry pairs where demonstration enterprises exist in

the city but not in the industry. These control groups are not subject to spatial spillover effects but

may experience inter-industry spillovers within the city.

3. Spatial spillover control group: City–industry pairs where demonstration enterprises exist in the

industry but not in the city. These control groups are not subject to intra-city inter-industry spillover

effects but may experience spatial spillover effects.

4. Mixed spillover control group: City–industry pairs where demonstration enterprises exist in both

the industry and the city. Since these control groups may experience both types of spillover effects,

they are excluded from the estimation.
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Following the classification, I identify the treatment years for each spillover control group pair based on

the initial appearance of demonstration enterprises in their corresponding city or industry. This process

results in a staggered treatment structure comprising seven treatment cohorts. Consequently, I employ

the similar approach to construct stacked samples for estimation.

6.1.1 Inter-industry spillover effects in innovation

I first estimate the inter-industry spillover effects by comparing the inter-industry spillover control group

and the pure control group. The estimation equation is as follows:

lnPatentc,i ,t ,s =βi nd × 1
{

Tr eated ci t y
}

c,t
+ηc,i ,s +ρi ,t ,s +γpc ,t ,s +Tr end c,t ·δs +εc,i ,t ,s , (17)

where 1
{
Tr eated ci t y

}
c,t takes the value of one after city c occurs the first demonstration enterprises.

Different from estimations in earlier sections, this estimations relies on the variation in the city level,

essentially comparing cities with demonstration enterprises to cities without any of them. Therefore, it is

not longer feasible to control city-level time-varying fixed effects. Instead, I control for the province–year

interactive fixed effects γpc ,t ,s . The event study employs a similar specification, with the exception that

the treatment status indicator is replaced by a series of interaction terms between relative time dummies

and the treatment group indicator.

To enhance the comparability across cities, I employ two additional strategies. First, I introduce a

stack-specific linear time trend term into the estimation, where Tr end c,t ≡ 1
{
Same ci t y

}
c,t · t repre-

sents the product of a dummy variable indicating the spillover control group and a linear time term. This

approach is designed to account for potential linear time trends arising from unobserved confounding

factors (Moser and Voena, 2012).22 Second, I again restrict the estimation sample to city–industry pairs

whose number of invention patent applications in 2008 exceeds a specific threshold. However, given that

the number of patent applications in 2008 for city–industry pairs in the pure control group is generally low

(with a maximum of 58, as detailed in Appendix Table A.12), it is impractical to impose overly stringent

restrictions.

Figure 11 presents the results of the event study estimations. I clearly shows that, when the linear time

trend is excluded from the specification, a positive pre-trend is observed in the differences between the

two groups, resulting in positive point estimates in the stacked DD estimation. However, once the time

trend term is incorporated to account for this pre-trend, all coefficients in the event study become small

and statistically insignificant, and the average treatment effect estimated by the stacked DD decreases to

0.006. In Appendix Table A.13, I additionally provide estimates under different sample restrictions, where

the results remain consistent across all variations. These findings suggest that the inter-industry spillover

effects in innovation of the NTIDE policy is negligible in magnitude.

6.1.2 Spatial spillover effects in innovation

In contrast to inter-industry spillovers, spatial spillovers present a significant challenge to the overall ef-

fects of the policy. While inter-industry spillovers, which are theoretically negative, may lead to an un-

derestimation of the average treatment effect, such underestimation does not undermine the qualitative

conclusions of this study. However, if spatial spillover effects of the policy exist, theoretical expectations

suggest they could potentially be positive, which could result in an overestimation of the local effects and

22However, if the treatment effect is not immediate but instead manifests gradually over time (an example can be observed in
7), a linear time trend may inadvertently absorb part of the treatment effect, leading to a significant underestimation of the true
effect. Consequently, in subsequent analysis, I present results both with and without the inclusion of a linear time trend control.
The appropriateness of this control will be evaluated based on the event study.
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Stacked DD coef. w/o time trend: 0.204 (s.e. = 0.056)
Stacked DD coef. w/ time trend: 0.006 (s.e. = 0.038)
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Figure 11: Inter-industry spillover effects

Notes: This figure illustrates the event study results for inter-industry spillover effects, comparing the inter-industry
spillover control group with the pure control group. The analysis is restricted to city–industry pairs with at least
one invention patent application in 2008. The circles denote the point estimates, while the lines represent the 95%
confidence intervals. Lighter circles and lines correspond to estimates without controlling for a linear time trend,
whereas darker circles and lines correspond to estimates that include a linear time trend control. Additionally, the
figure reports the average treatment effects computed from the estimation of Equation (17). Further details regarding
the stacked DD estimates are provided in Appendix Table A.13.
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the policy’s adverse impact on nationwide innovation. Consequently, identifying spatial spillover effects

is essential to ensure the reliability of the findings presented in the previous text.

I first employ the following specification to compare the spatial spillover control group with the pure

control group:

lnPatentc,i ,t ,s =βspati al × 1
{

Tr eated i nd
}

i ,t
+ηc,i ,s +ρI ,t ,s +γc,t ,s +Tr end i ,t ·δs +εc,i ,t ,s , (18)

where 1
{
Tr eated i nd

}
i ,t takes the value of one after the first demonstration enterprise emerges in industry

i . This estimation relies on variation across industries. Consequently, similar to Equation (17), I replace

the industry-level time-varying fixed effects with sector-level time-varying fixed effects. The linear time

trend term, Tr end i ,t ≡ 1
{

same i ndustr y
}

i ,t · t , is also included in this estimation.

Figure 12 presents the estimation of the event study. Regardless of whether the time linear trend is

controlled for, there are no significant treatment effects observed after the implementation of the policy.

Furthermore, the estimates derived from the stacked DD approach remain small in magnitude.

Stacked DD coef. w/o time trend: 0.041 (s.e. = 0.093)
Stacked DD coef. w/ time trend: 0.027 (s.e. = 0.063)
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Figure 12: Spatial spillovers: spatial spillover control group versus pure control group

Notes: This figure illustrates the event study results for spatial spillover effects, comparing the spatial spillover control
group with the pure control group. The analysis is restricted to city–industry pairs with at least one invention patent
application in 2008. The circles denote the point estimates, while the lines represent the 95% confidence intervals.
Lighter circles and lines correspond to estimates without controlling for a linear time trend, whereas darker circles
and lines correspond to estimates that include a linear time trend control. Additionally, the figure reports the average
treatment effects computed from the estimation of Equation (18). Further details regarding the stacked DD estimates
are provided in Appendix Table A.14.

The above estimation relies on the implicit assumption that when demonstration enterprises emerge

in a specific industry in certain cities, the same industry in other cities potentially experience spatial

spillover effects. Therefore, by comparing industries with demonstration enterprises to those without,

the magnitude of spatial spillover effects can be estimated. However, a potential concern arises as the

spatial spillover effects of the policy may not apply uniformly across all regions. Consequently, conduct-

ing comparisons at the industry level might dilute the estimated magnitude of these effects.
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To address this concern, specific assumptions about the spatial scope of spillover effects should be

made, and the groups can be reconstructed accordingly for estimation. I assume that spatial spillover ef-

fects decay with distance and primarily affect control group cities adjacent to the treatment group cities.

Under this assumption, the same industry in cities adjacent to treatment group cities is defined as the

spillover group, while the remaining city–industry pairs are defined as the control group. By comparing

these two groups, the magnitude of spillover effects is estimated. Figure 13 presents the event study re-

sults, where insignificant treatment effects are observed again.

Stacked DD coef.: -0.007 (s.e. = 0.015)

-.1

-.05

0

.05

.1

C
oe

ffi
ci

en
t

≤ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Relative period to treatment

Figure 13: Spatial spillovers: adjacent cities versus other cities

Notes: This figure illustrates the event study results for spatial spillover effects, comparing the cities adjacent to those
with demonstration enterprises and other cities. The analysis is restricted to city–industry pairs with at least one
invention patent application in 2008. The circles denote the point estimates, while the lines represent the 95% confi-
dence intervals. Details regarding the stacked DD estimates are provided in Appendix Table A.15.

6.2 Local knowledge spillovers

Finally, I examine whether subsidies to leading firms can promote local knowledge spillovers. A substan-

tial body of literature has emphasized the critical role of knowledge spillovers in enhancing the overall

productivity of cities or clusters, highlighting the rapid decay of knowledge spillover effects with distance

(Moretti, 2021; Atkin et al., 2022). The NTIDE policy incentivizes leading firms to increase their R&D in-

vestments, thereby generating more innovations, which may facilitate the diffusion of new technologies

from leading firms to other firms. However, as previously documented, the policy suppresses the R&D in-

vestments of competitor firms and deters new entrants, potentially hindering knowledge diffusion among

other firms. Consequently, the net impact of the policy on local knowledge spillovers remains ambiguous.

Based on the patent citation network, I identify each patent’s citations to other patents within the same

city–industry pair. This allows me to compute the average number of local citations per patent for each

city–industry pair over time, which serves as a measure for local knowledge spillovers. The estimation

equation is consistent with Equation (15), with the dependent variable replaced by the logarithm of the

average number of local citations per patent. Table 3 reports the estimation results. Across different sam-
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ple restrictions, the estimated coefficients are statistically insignificant, and the point estimates are small,

indicating that the policy did not promote local knowledge spillovers where demonstration enterprises

are located.

This finding carries two important implications. First, the local knowledge spillover effects gener-

ated by subsidizing leading firms are weak. Demonstration enterprises may be reluctant to actively share

their innovations due to self-interest, which may be attributed to the lack of incentives or regulations

requiring demonstration enterprises to share their inventions after awarding the policy title. Second,

subsidies to leading firms may negatively affect other competitor firms and potential entrants, thereby

hindering knowledge spillovers from these firms. Therefore, selective innovation policies aimed at pro-

moting knowledge diffusion must carefully consider the impact of policies on the competitive structure of

innovation among firms, rather than focusing solely on the behavioral changes of the direct policy targets.

Table 3: Policy effects on local knowledge spillovers

Logarithm of local citations per patent

Restrictions on # of invention patents in 2008

> 0 > 20 > 40

(1) (2) (3) (4)

Treated -0.004 -0.005 -0.014 -0.006
(0.045) (0.045) (0.029) (0.028)

City FEs × Ind. FEs × Stack FEs Yes Yes Yes Yes
Ind. FEs × Year FEs × Stack FEs Yes Yes Yes Yes
City FEs × Year FEs × Stack FEs Yes Yes Yes Yes
# of clusters: city 292 289 175 127
# of clusters: industry 54 54 54 50
# of observations 465,430 422,334 162,932 107,272

Notes: This table uses local patent citations to estimate the local knowledge spillover effects of the NTIDE policy.
Columns (2) to (4) estimate the effects using city–industry pairs with more than 0, 20, and 40 patent applications
in the sample year (i.e., 2008), respectively. Standard errors, two-way clustered at the city and industry levels, are
reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.

7 Conclusion

This study highlights the negative spillover effects of selective R&D expenditures resulting from changes

in innovation competition among firms. At its core, firms’ innovation efforts represent a competition for

market share, meaning that the R&D investment decisions of individual firms are jointly influenced by

the actions of all firms in the market. When governments selectively provide subsidies to specific firms—

particularly leading firms close to the productivity frontier—it indirectly alters the competitive landscape,

reducing the incentives for other firms to innovate and challenge the leading firms. This economic intu-

ition is formalized using a Schumpeterian model, which demonstrates that while government R&D sub-

sidies to leading firms incentivize them to increase R&D investment and enhance expected productivity,

they simultaneously diminish the R&D investment incentives of other firms, especially those relatively

lagging in productivity.

The theoretical predictions are corroborated by empirical evidence from the implementation of the

“National Technology Innovation Demonstration Enterprise” policy in China, which primarily subsidizes

local innovation star firms. The study also evaluates the overall effects of the policy and finds that it leads

to a decline in citation-weighted patent applications both in the regions where it is implemented and

nationwide. These negative effects are more pronounced in markets characterized by intense competition
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and active entry of new firms, consistent with the theoretical explanation that competitor firms and new

entrants are disproportionately discouraged by the policy in such markets.

This study carries three policy implications. First, governments should be cautious about the potential

discouraging effects of subsidizing leading firms. Particularly, in industries characterized by intense mar-

ket competition and active entries of new firms, such selective R&D subsidy policies may yield adverse

outcomes. Second, the negative aggregate effects suggest that new firms and small-to-medium enter-

prises (SMEs), which are relatively lagging behind the productivity frontier, may play a more significant

role in driving aggregate innovation. Consequently, governments should implement measures to pro-

mote competition, encourage firm entry, and support the development of SMEs. Third, given the inter-

connected nature of innovation competition among firms, selective innovation policies are susceptible to

unanticipated firm responses and unintended consequences. This aligns with the broader debate on in-

dustrial policies and the question of whether governments can effectively identify future winners (Juhász

et al., 2024). Therefore, governments may consider adopting non-selective policies, such as investing in

education and training or providing universal innovation support, to effectively incentivize aggregate in-

novation.
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For Online Publication

A Additional policy background

This appendix provides additional background on the National Technological Innovation Demonstration

Enterprise (NTIDE) policy.

A.1 Submitted materials and criteria prioritized in certification

I begin by providing a more comprehensive summary of the materials that applicant enterprises are re-

quired to submit to the government. This is significant because these materials reflect the criteria prior-

itized by the government during the certification process. As stipulated in the policy document, enter-

prises must submit a declaration, the Table of Enterprise Basic Information, and the Table of Evaluation

Indicators for Enterprise Technological Innovation. The latter two tables encompass critical indicators of

the enterprise’s financial performance as well as its innovation achievements. A translation of these tables

is provided in Table A.1 and A.2. 1

After enterprises submit their application materials, the provincial departments of industry and in-

formation technology, in coordination with their respective finance departments, conduct a review of the

submitted documents and determine the list of recommended enterprises. The application materials of

the recommended enterprises, accompanied by the review comments, are forwarded to the Ministry of

Industry and Information Technology (MIIT) within the designated time frame. Furthermore, provincial

governments are required to submit the Summary Table of Recommended Enterprises for National Tech-

nology Innovation Demonstration Enterprises to the MIIT.

Figure A.3 presents the summary table submitted by local governments to the MIIT during the 2012

certification process. In addition to listing the names of the recommended enterprises, the table includes

detailed information on each enterprise’s type, industry, R&D investment, main business revenue, new

product sales revenue, number of patent applications from the previous year, and any prior policy-related

titles awarded to the enterprises. These variables, contingent on data availability, are utilized as covariates

in the empirical analysis when matching the control group for the treated firms.

A.2 Detailed summary of annual certification and re-evaluation

Appendix Table A.1 presents the number of certified demonstration enterprises, the number of re-evaluated

enterprises, the number of enterprises failing in the re-evaluation, the passing rate, and the cumulative

number of demonstration enterprises at the end of the year from 2011 to 2017. On average, 71 demonstra-

tion enterprises were certified annually between 2011 and 2017. Demonstration enterprises are subject

to a re-evaluation process every three years. For instance, the 55 demonstration enterprises certified in

2011 underwent two re-evaluations in 2014 and 2017, respectively. From 2014 to 2017, an average of 84.5

demonstration enterprises underwent re-evaluation annually, with an average approval rate of 99.2%.

The table indicates that, during the sample period of this study, nearly no enterprises in the treatment

group lost the policy title. Consequently, in the main text, when estimating treatment effects, once an

enterprise is certified as a demonstration enterprise or a city–industry pair experiences its first demon-

stration enterprise, it is reasonably assumed to remain treated for the entire sample period. This approach

allows me to circumvent the complexities associated with addressing the issue of exiting treatment status,

which is particularly challenging when treatment effects vary over time.

1The original tables in Chinese are available at https://www.miit.gov.cn/gyhxxhb/jgsj/kjs/wzpz/ztzl/gjjscxsfqy/
tzgg/art/2020/art_c89910df1c7b42c5a6807d5eafaaf38c.html (accessed February 2025).
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A.3 The industry distribution of demonstration enterprises

Figure A.4 illustrates the industry distribution of demonstration enterprises. The left panel presents the

distribution of the 494 demonstration enterprises existing after the certification in 2017 (i.e., all treatment

cohorts from 2012 to 2018) across industries, while the right panel displays the proportion of invention

patent applications classified into each industry from 2008 to 2018.

Broadly speaking, demonstration enterprises are predominantly concentrated in heavy manufactur-

ing industries, which also account for a significant share of patents. This aligns with the policy objectives

aimed at promoting overall innovation. The left panel reveals that the four industries with the highest

concentration of demonstration enterprises are “Pharmaceutical Manufacturing,” “Electronics Manufac-

turing,” “Electrical Machinery Manufacturing,” and “Chemical Manufacturing.”

It is important to note that, in this study, patents are assigned to industries based on the matching

between International Patent Classification (IPC) codes and major industry categories. This approach

essentially examines the industries in which patents are exploited, under the assumption that patents in-

vented by enterprises are primarily utilized within their respective industries. However, this assumption

does not hold for certain industries. For instance, there is no IPC code corresponding to the “R&D” indus-

try. Consequently, although this category includes 28 demonstration enterprises, its patent share is zero.

For this reason, all empirical analyses regarding patents in the main text are restricted to the 54 industries

that correspond to IPC codes.

A.4 The spatial distribution of demonstration enterprises

Appendix Table A.2 presents the distribution of the cumulative number of demonstration enterprises,

specifically examining whether multiple demonstration enterprises exist within the same city–industry

pair. For example, as shown in the first row, among the 52 city–industry pairs treated in 2012 (where

the first demonstration enterprise was certified in 2011), 50 had only one demonstration enterprise, ac-

counting for 96.15% of the sample. Only 2 treated city–industry pairs had two demonstration enterprises,

representing 3.85% of the sample.

Although the proportion of treated city–industry pairs with only one demonstration enterprise de-

creased over time, as of the 2017 certification, 85.29% of treated city–industry pairs still had only one

demonstration enterprise. This observation provides two key insights. First, the use of a binary treatment

variable in this study is reasonable. While it is possible to construct a continuous variable representing

treatment intensity based on the number of demonstration enterprises, switching to a continuous treat-

ment variable would only alter the variable values for a very small proportion of the sample. Second, the

policy objective of the demonstration enterprise program is unlikely to be signaling policy incentives by

subsidizing “star enterprises” to attract innovation from other local firms. This is because city–industry

pairs with an existing demonstration enterprise rarely have a second enterprise certified.

A.5 The market standing of demonstration enterprises

Finally, I examine the market standing of demonstration enterprises to support the conclusion in the main

text that demonstration enterprises are typically leading firms within their local markets. Specifically,

I calculate the percentile rankings of listed demonstration enterprises in their respective provinces and

industries across four variables: the number of invention patent applications, the number of utility model

patents, R&D expenditure, and asset size. These rankings are based on data of listed firms from the year

prior to certification.

Figure A.5 presents the results. On average, demonstration enterprises rank between the 70th and 80th
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percentiles across the four variables. To better reflect the market standing of early-certified demonstra-

tion enterprises, I further restrict the sample to industries with no more than three listed demonstration

enterprises nationwide. In these industries, the average ranking of demonstration enterprises in terms of

invention patent applications approaches the 85th percentile, and their average ranking in R&D invest-

ment reaches the 87th percentile, indicating more pronounced leading positions.

Given that listed firms generally have larger production scales, higher R&D expenditures, and greater

productivity levels compared to the overall population of firms, these findings support the conclusion

that demonstration enterprises hold a significantly leading position within their respective industries and

provinces. Additionally, the results suggest that, when certifying demonstration enterprises, the govern-

ment may place greater emphasis on R&D expenditure and the number of invention patents—which re-

flect higher levels and quality of innovation—than on firm size or the number of utility model patents.

This again aligns with the policy’s underlying objectives.
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B Additional proofs

B.1 Proof of Equation (2)

On the demand side, the utility of the representative household is the consumption of final goods, which

is represented by the following utility function:

Ut = Yt =
( ∑

i∈I

Y
η−1
η

i ,t

) η
η−1

. (A.1)

The representative household maximizes its utility by choosing the optimal consumption of goods from

each industry Yi ,t . The utility maximization problem is formulated as:

max
{Yi ,t }i∈I

Ut =
( ∑

i∈I

Y
η−1
η

i ,t

) η
η−1

s.t.
∑

i∈I

Pi ,t Yi ,t ≤ St ,

(A.2)

where St represents the budget constraint. Given that the marginal utility of each good is always positive

and approaches infinity as its quantity approaches zero, utility maximization implies that all goods are

consumed, and the representative household exhausts its entire budget on consumption. Therefore, the

Lagrangian is

L =
( ∑

i∈I

Y
η−1
η

i ,t

) η
η−1

−λ

( ∑
i∈I

Pi ,t Yi ,t −St

)
. (A.3)

Considering the consumption of goods from industry i and another industry i ′, the first-order condi-

tions require that their optimal consumption satisfy

Yi ′,t =
(

Pi ,t

Pi ′,t

)η
Yi ,t . (A.4)

Using this relationship, the optimal consumption of any good can be expressed in terms of the consump-

tion of good i . Substituting these expressions into the utility function yields:

Yi ,t =
(

Pi ,t

Pt

)−η
Yt , (A.5)

where Pt ≡
(∑

i∈I P 1−η
i ,t

)1/(1−η)
. ■

B.2 Proof of Equation (4)

Given a production level Yi ,t , firm i selects the optimal combination of labor and capital inputs to mini-

mize its cost. Formally, the optimization problem is expressed as

min
{Ki ,t ,Li ,t }

ci ,t = wt Li ,t + rt Ki ,t

s.t. Yi ,t = Ai ,t K α
i ,t L1−α

i ,t .
(A.6)

From the first-order conditions, the optimal capital input can be expressed in terms of the optimal labor

input as:

K ∗
i ,t =

α

1−α

wt

rt
L∗

i ,t . (A.7)
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Substituting this expression into the production function yields the optimal labor input required to

produce Yi ,t units of output:

L∗
i ,t =

Yi ,t

Ai ,t

(
rt

wt

)α (
1−α

α

)α
. (A.8)

The corresponding optimal capital input is then derived as

K ∗
i ,t =

Yi ,t

Ai ,t

(
rt

wt

)α−1 (
1−α

α

)α−1

. (A.9)

Combining these two results, the minimum cost of producing Yi ,t units of output is given by

c∗i ,t = wt L∗
i ,t + rt K ∗

i ,t

= α−α (1−α)1−α rα
t w1−α

t

Ai ,t
Yi ,t .

(A.10)

Thus, the minimum cost is a linear function of production, and the unit cost is

Ci ,t =
α−α (1−α)1−α rα

t w1−α
t

Ai ,t
. (A.11)

■

B.3 Proof of Equation (6)

The profit maximization problem of monopolistic firm i in period t is

max
Pi ,t

πi ,t = Pi ,t Yi ,t −Ci ,t Yi ,t , (A.12)

where Yi ,t =
(
Pi ,t /Pt

)−η Yt represents the demand for the firm’s product. Substituting the demand func-

tion into the profit equation and solving the first-order condition yields the optimal price set by the mo-

nopolistic firm:

Pi ,t = η

η−1
Ci ,t , (A.13)

which reflects a markup over the unit (marginal) cost. Substituting the optimal price back into the profit

function, the optimal profit is derived as

π∗
i ,t = η−η

(
η−1

)η−1 Yt Pη
t C 1−η

i ,t

= η−η
(
η−1

)η−1 Yt Pη
t C 1−η

t Aη−1
i ,t ,

(A.14)

where Ct ≡α−α (1−α)α−1 rα
t w1−α

t is an exogenous term that is constant across industries/firms. ■

B.4 Proof of Proposition 1

Proposition 1. As government-provided innovation subsidies to the leading firm increase, the direction of

the change in its private R&D investments depends on the degree of substitutability between private R&D

investments and subsidies σ.

Proof. I start with discussing a more general assumption for the specification of E
[
(1+λ)η−1 | Ii ,t

]
. Sup-

pose that E
[
(1+λ)η−1 | Ii ,t

] = µ
(
Ii ,t

)
, with µ′ > 0 and µ′′ < 0 to depict two well-acknowledged properties:

positive gains and diminishing marginal effects. Accordingly, the inter-temporal profits maximization
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problem is given by

max
Ri ,t

Πi = Π̃t Aη−1
i ,t −Ri ,t + 1

1+β
Π̃t+1 Aη−1

i ,t µ
(
Ii ,t

)
,

with Ii ,t =
(
R

σ−1
σ

i ,t +S
σ−1
σ

i ,t

) σ
σ−1

,

(A.15)

the first-order condition of which is

∂Πi

∂Ri ,t
=−1+ 1

1+β
Π̃t+1 Aη−1

i ,t µ′ ∂Ii ,t

∂Ri ,t

=−1+ 1

1+β
Π̃t+1 Aη−1

i ,t µ′
(
R

σ−1
σ

i ,t +S
σ−1
σ

i ,t

) 1
σ−1

R
− 1

σ

i ,t = 0,

(A.16)

and the second-order condition is

∂2Πi

∂R2
i ,t

= 1

1+β
Π̃t+1 Aη−1

i ,t

[
µ′′

(
∂Ii ,t

∂Ri ,t

)2

+µ′ ∂
2Ii ,t

∂R2
i ,t

]
. (A.17)

The CES aggregation implies that ∂2Ii ,t /∂R2
i ,t ≤ 0. Specifically,

∂2Ii ,t

∂R2
i ,t

=− 1

σ

(
R

σ−1
σ

i ,t +S
σ−1
σ

i ,t

) 2−σ
σ−1

R
− σ+1

σ

i ,t S
σ−1
σ

i ,t ≤ 0. (A.18)

With µ′ > 0 and µ′′ < 0, I prove that the second-order condition is always negative (i.e., ∂2Πi /∂R2
i ,t < 0).

Therefore, the second-order condition ensures the uniqueness of the optimal private R&D investments as

long as the solution of the first-order condition exists.

I first assume that the solution exists and discuss its property with respect to the innovation subsi-

dies Si ,t . Denoting the optimal private R&D investments that solves the first-order condition as R∗
i ,t and

defining F ≡ ∂Πi /∂Ri ,t , applying the implicit function theorem to Equation (A.16) yields

dR∗
i ,t

dSi ,t
=− ∂F/∂Si ,t

∂F/∂Ri ,t
, (A.19)

where the denominator is negative due to the second-order condition. Therefore, the direction of the

change in the optimal private R&D investments with respect to the innovation subsidies Si ,t is determined

by the sign of ∂F/∂Si ,t . Further,

∂F

∂Si ,t
= 1

1+β
Π̃t+1 Aη−1

i ,t

(
R

σ−1
σ

i ,t +S
σ−1
σ

i ,t

) 2−σ
σ−1

R
− 1

σ

i ,t S
− 1

σ

i ,t

(
µ′′Ii ,t + 1

σ
µ′

)
, (A.20)

and the sign of this equation is determined by µ′′Ii ,t + 1
σµ

′. This equation indicates that, given µ (·) and

Ii ,t , if private R&D investments and government-provided innovation subsidies are better complementary

(i.e., σ is smaller), ∂F/∂Si ,t will be larger, suggesting that public innovation funds will less crowd out

private R&D investments. However, unless allowing more assumptions on the specification of µ (·), it is

still unable to determine the direction of the change in the optimal private investments as well as the total

R&D expenditure.

With the assumption in the main text, µ
(
Ii ,t

) = τ ln Ii ,t , where τ > 0 controls for the measurement

units, I derive

µ′′Ii ,t + 1

σ
µ′ = τ

Ii ,t ,

(
1

σ
−1

)
. (A.21)

Therefore, if σ > 1 (more substitute), then µ′′Ii ,t + 1
σµ

′ < 0 and, consequently, dR∗
i ,t /dSi ,t < 0, suggesting

A6



the increase on innovation subsidies crowds out private R&D investment. On the contrary, if 0 < σ < 1

(more complementary), the increase on innovation subsidies can encourage private R&D investments.

Finally, I back to prove the existence of the solution of the first-order condition. Substituting µ
(
Ii ,t

)=
τ ln Ii ,t into Equation (A.16) yields

R
− 1

σ

i ,t

R
σ−1
σ

i ,t +S
σ−1
σ

i ,t

= 1+β

τΠ̃t+1 Aη−1
i ,t

, (A.22)

where the right-hand side of this equation is a positive constant. Notice that the second-order condi-

tion ensures that the left-hand side decreases as Ri ,t increases, thus it is convenient to investigate the

existence of the solution by discussing the values at the endpoints of the domain. Since R−1/σ
i ,t → 0 and

R(σ−1)/σ
i ,t + S(σ−1)/σ

i ,t > 0 when Ri ,t → ∞, the value of the left-hand side approaches zero when Ri ,t → ∞.

Additionally, R−1/σ
i ,t →∞ when Ri ,t → 0. If σ ≥ 1, then R(σ−1)/σ

i ,t +S(σ−1)/σ
i ,t → 2 (σ = 1) or S(σ−1)/σ

i ,t (σ > 1).

Therefore, the value of the left-hand side approaches infinity when Ri ,t → 0. If 0 < σ < 1, when Ri ,t → 0,

R−1/σ
i ,t /

(
R(σ−1)/σ

i ,t +S(σ−1)/σ
i ,t

)
∼ R−1/σ

i ,t /R(σ−1)/σ
i ,t = R−1

i ,t → ∞. Taken together, when Ri ,t → 0, the left-hand

side of the first-order condition approaches infinity, while it approaches zero when Ri ,t → ∞. As the

right-hand size is a positive constant, the continuity and monotonicity of the left-hand side ensure the

existence of the solution. ■

B.5 Proof of Proposition 2

Proposition 2. As government-provided innovation subsidies to the leading firm increase, its total R&D

expenditure rises, regardless of the value of σ.

Proof. I begin with discussing a special case with σ = 1. Based on Equation (A.21), dR∗
i ,t /dSi ,t = 0 when

σ= 1, suggesting private R&D investment will be neither crowded out nor encouraged when government-

provided innovation subsidies increase. Therefore, the total R&D expenditure will increase as subsidies

increases.

When σ ̸= 1, I can transform the first-order condition in Equation (A.22) into

R
− 1

σ× σ
σ−1

i ,t(
R

σ−1
σ

i ,t +S
σ−1
σ

i ,t

) σ
σ−1

=
 1+β

τΠ̃t+1 Aη−1
i ,t

 σ
σ−1

⇔ Ii ,t =
 1+β

τΠ̃t+1 Aη−1
i ,t

 σ−1
σ

R
− 1

σ−1
i ,t .

(A.23)

Accordingly, discussing the direction of the change in the total R&D expenditure under optimization is

equivalent to discuss the right-hand size of this equation with Ri ,t being the optimal private investment

(i.e., R∗
i ,t ).

If σ> 1, Equation (A.21) suggests that dR∗
i ,t /dSi ,t < 0. As −1/(σ−1) < 0, the increase of Si ,t decreases

R∗
i ,t and increases R∗

i ,t
−1/(σ−1), thus Ii ,t under optimization increases as subsidies Si ,t increase. Addition-

ally, if σ< 1, Equation (A.21) suggests that dR∗
i ,t /dSi ,t > 0. As −1/(σ−1) > 0, the increase of Si ,t increases

both R∗
i ,t and R∗

i ,t
−1/(σ−1), thus Ii ,t under optimization again increases as subsidies Si ,t increase. Taken

together, I prove that as government-provided innovation subsidies to the leading firm increase, the total

R&D expenditure of the leading firm rises, regardless of the value of σ. ■
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B.6 Proof of Proposition 3

Proposition 3. As government-provided innovation subsidies to the leading firm increase, firms exhibiting

larger productivity lag relative to the leading firm will decrease their total R&D expenditure, thereby leading

to a decline in their probability of firm entry.

Proof. The expected profits maximization problem for other firms is given by

max
Ro,t

Πo =−Ro,t + 1

1+β

∫∞

0
Fλ

(
x

Ai ,t
−1 | Ii ,t

)
Π̃t+1xη−1dFA

(
x | Ro,t

)
. (A.24)

The first-order condition is

∂Πo

∂Ro,t
=−1+ ∂

∂Ro,t

[
1

1+β

∫∞

0
Fλ

(
x

Ai ,t
−1 | Ii ,t

)
Π̃t+1xη−1dFA

(
x | Ro,t

)]= 0, (A.25)

and the Inada conditions on δ
(
Ro,t , Ii ,t

)
ensures that the second-order condition is negative and the so-

lution to the first-order condition exists and is unique.

Define G ≡ ∂Πo/∂Ro,t . Using the implicit function theorem, the direction of the change in the optimal

Ro,t (denoted as R∗
o,t ) with respect to Ii ,t is

dR∗
o,t

dIi ,t
=− ∂G/∂Ii ,t

∂G/∂Ro,t
, (A.26)

where the denominator is negative due to the second-order condition. The numerator is

∂G

∂Ii ,t
= 1

1+β
· ∂2

∂Ro,t∂Ii ,t

[∫∞

0
Fλ

(
x

Ai ,t
−1 | Ii ,t

)
Π̃t+1xη−1dFA

(
x | Ro,t

)]
. (A.27)

Using the Leibniz integral rule, I put the derivative inside the integral and obtain

∂G

∂Ii ,t
= 1

1+β

∫∞

0
Π̃t+1xη−1

∂Fλ

(
x

Ai ,t
−1 | Ii ,t

)
∂Ii ,t

∂ f A
(
x | Ro,t

)
∂Ro,t

dx

= 1

1+β

∫∞

Ai ,t

Π̃t+1xη−1
∂Fλ

(
x

Ai ,t
−1 | Ii ,t

)
∂Ii ,t

∂ f A
(
x | Ro,t

)
∂Ro,t

dx.

(A.28)

Since λ> 0 by definition, the derivative ∂Fλ

(
x/Ai ,t −1 | Ii ,t

)
/∂Ii ,t can only be non-zero when x > Ai ,t . As

a result, the integral can be equivalently computed over the interval
(

Ai ,t ,∞)
.

The partial derivative ∂Fλ

(
x/Ai ,t −1 | Ii ,t

)
/∂Ii ,t is non-positive and has at least one interval over which

its value is strictly negative, which is guaranteed by the condition of first-order stochastic dominance.

Consequently, the sign of the integral is determined by ∂ f A
(
x | Ro,t

)
/∂Ro,t . The rightward shift of FA

(
x | Ro,t

)
as Ro,t increases implies that ∂ f A

(
x | Ro,t

)
/∂Ro,t is negative for some smaller values of x and positive for

larger values of x. As a result, further analysis of this derivative is required.

I first demonstrate the existence of a critical value of x, denoted by x̂, such that for x < x̂, the partial

derivative ∂ f A
(
x | Ro,t

)
/∂Ro,t < 0, and for x > x̂, ∂ f A

(
x | Ro,t

)
/∂Ro,t > 0. This property holds given two as-

sumptions outlined in the main text. The first assumption is that Ro,t influences the first-order moment

of the distribution but does not affect higher-order moments. Consequently, as Ro,t increases, the den-

sity function shifts rightward while preserving its shape. To formalize this, let f 0
A (x) denote the baseline

density function, which represents the density conditional on Ro,t = 0. Then, other conditional density

functions can be expressed as

f A
(
x | Ro,t

)= f 0
A

(
x −µ

(
Ro,t

))
, (A.29)
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where µ
(
Ro,t

)
governs the shift of the density function and satisfies µ′ (Ro,t

)> 0.

The second assumption is that the density function is unimodal. Let m0 denote the mode of the base-

line density function f 0
A (x). It follows that the derivative f 0

A
′
(x) > 0 when x < m0 and f 0

A
′
(x) < 0 when

x > m0. Consequently, the mode of the conditional density function f A
(
x | Ro,t

)
is given by m0 +µ

(
Ro,t

)
.

Using the relationship expressed in Equation (A.29), the partial derivative of the conditional density

function with respect to Ro,t can be derived as:

∂ f A
(
x | Ro,t

)
∂Ro,t

=− f 0
A
′ (

x −µ
(
Ro,t

))
µ′ (Ro,t

)
. (A.30)

From this, it is evident that x̂ = m0 +µ
(
Ro,t

)
. This critical point delineates the regions where the partial

derivative changes sign.

This property enables the distinction between two cases. The first case arises when the productivity

distribution of the competitor firm is sufficiently close to that of the leading firm, such that m0+µ
(
Ro,t

)>
Ai ,t . In this scenario, Equation (A.28) can be reformulated as follows:

∂G

∂Ii ,t
= 1

1+β

∫m0+µ(Ro,t )

Ai ,t

Π̃t+1xη−1
∂Fλ

(
x

Ai ,t
−1 | Ii ,t

)
∂Ii ,t

∂ f A
(
x | Ro,t

)
∂Ro,t

dx︸ ︷︷ ︸
non-negative

+ 1

1+β

∫∞

m0+µ(Ro,t )
Π̃t+1xη−1

∂Fλ

(
x

Ai ,t
−1 | Ii ,t

)
∂Ii ,t

∂ f A
(
x | Ro,t

)
∂Ro,t

dx︸ ︷︷ ︸
non-positive

.

(A.31)

Therefore, the sign of ∂G/∂Ii ,t hinges on the relative dominance of the two integrals. However, this re-

lationship remains indeterminate, which implies that the direction of the change in the total R&D ex-

penditure of the competitor firm, in response to an increase in subsidies to the leading firm, cannot be

conclusively determined.

In the alternative case, where the competitor firm exhibits a larger productivity lag relative to the lead-

ing firm—formally, m0+µ(
Ro,t

)≤ Ai ,t —it follows that ∂G/∂Ii ,t < 0 and, consequently, dR∗
o,t /dIi ,t < 0. This

result suggests that an increase in the leading firm’s R&D expenditure, driven by government-provided

subsidies, exerts a discouraging effect on the R&D expenditure of the competitor firm. ■
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C Additional figures and tables

Basic Information Form of the Enterprise  

 

Name  

Address  Postal Code  

Legal 
Representative 

 Phone  Mobile  

Contact Person  Phone  Mobile  

Fax  E-mail  

Enterprise Type 1. State-Owned  2. Joint Venture  3. Private  4. Others 

Number of 
Employees 

 

Number of 
Employees with 

a Bachelor's 
Degree or 

Above 

 

Number of 
Employees 

with a Senior 
Professional 

Title or Above 

 

Economic 
Performance in 

2011 

Total Assets  Total Liabilities  

Main Business Revenue , increase of ___% compared to 2010 

Revenue from New 
Product Sales 

 Taxes Paid  

Total Profit 

, increase of ___% compared to 2010 

Continuous Profitability for the Past Three 
Years: Yes/No 

Market Share of Main 
Products 

 
Total Export 

Revenue 
 

Total R&D Investment in the Last Three Years  
R&D 

Investment in 
2011 

 

Number of Patent 
Applications 

 

Inventions  

Utility 
Models 

 

Designs  

Have a Provincial 
or National-Level 

Technology 
Center? 

1. Provincial   
2. National 

Relevant 

Certification 

Authority 

 

Bank Credit Rating  

Note: The above indicators should be based on data as of the end of 2011. 

Figure A.1: The Table of Enterprise Basic Information (2012)
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Enterprise Technological Innovation Evaluation 
Indicators 

 
Primary 

Indicators 
Secondary 
indicators 

Tertiary Indicators Unit Value 

Innovation 
Mechanism 

Innovation 
Investment 

1. Proportion of enterprise R&D expenditure 
to product sales revenue 

%  

2. Increase in R&D expenditure ratio 
compared to the previous year 

Percentage 
points 

 

Talent 
Incentives 

3. Ratio of annual per capita income of R&D 
personnel to the enterprise’s annual per 

capita income 
  

4. Proportion of R&D personnel training 
expenses to total income of technical center 

staff 
%  

Innovation 
Cooperation 

5. Number of external experts engaged in 
technology development 

Person-
months 

 

6. Proportion of external cooperation 
projects to total development projects 

%  

Technology 
and Talent 

Innovation 
Team 

Development 

7. Proportion of R&D personnel to total 
employees 

%  

8. Number of senior experts and PhD 
holders in enterprise R&D institutions 

Person  

Innovation 
Infrastructure 

9. Original value of enterprise technology 
development instruments and equipment 

10,000 CNY  

10. Number of laboratories certified by 
national and international organizations 

  

Technology 
Accumulation 
and Reserves 

11. Proportion of projects with an R&D cycle 
of three years or more 

%  

12. Total number of valid invention patents 
owned by the enterprise 

  

13. Number of Chinese well-known brands 
or famous trademarks owned by the 

enterprise 
  

Output and 
Benefits 

Technological 
Innovation 

Output 

14. Number of new product, technology, 
and process development projects 

completed during the year 
  

15. Number of patent applications filed 
during the year 

Of which, number of invention patent 
applications filed during the year 

  

16. Number of international, national, and 
industry standards formulated or 

participated in 
  

Technological 
Innovation 
Benefits 

17. Proportion of new product sales 
revenue to total product sales revenue 

%  

18. Proportion of new product sales profit to 
total product sales profit 

%  

19. Export earnings from proprietary brand 
products and technologies 

10,000 USD  

Others  

20. Number of projects awarded by National 
Natural Science, Technological Invention, or 
Science and Technology Progress Awards 

  

21. Difference between year-end net cash 
flow and distributable profit 

10,000 CNY  

 
Figure A.2: The Table of Evaluation Indicators for Enterprise Technological Innovation (2012)
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国家技术创新示范企业推荐企业汇总表 

 

推荐单位： 

序号 企业名称 
企业 

类型 

企业主营

业务所属

行业 

2011年企业

研究开发投

入资金 

（万元） 

2011年企

业主营业

务收入 

（万元） 

2011年新

产品销售

收入 

（万元） 

2011年

企业申

请专利

数（个） 

其中： 
是否省级以上 

企业技术中心 
备注 

发明 
实用 

新型 

外观 

设计 
国家级 省级 

              

              

              

              

              

 

Recommendation authori ty  

No. Enterprise 
name 

Type Industry  R&D 
investment 

in 2011 

Main 
business 
revenue 
in 2011 

New 
product 

sales 
revenue 
in 2011 

Number 
of 

patents 
appl ied  
in 2011 

Invention 
patents 

Uti l i ty 
model 

patents 

Of which: 

Provincial - level or 
above enterprise 

technology center? 

National 
level? 

Provincial  
level? 

Remarks 

Design 
patents 

Figure A.3: The Summary Table of Recommended Enterprises for National Technological Innovation
Demonstration Enterprises (2012)
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0 10 20 30 40 50
Number of demonstration enterprises in 2018

Intl. Organs. (97)
Grassroots Self-Gov. (96)

Social & Membership Organs. (95)
Social Security (94)

Political Consultative Organs. (93)
State Organs. (92)
CPC Organs. (91)

Recreation (90)
Sports (89)

Culture & Arts (88)
Broadcasting & Entertainment (87)

Media & Publishing (86)
Social Work (85)
Healthcare (84)
Education (83)

Other Svcs. (82)
Vehicle & Appliance Repair (81)

Household Svcs. (80)
Land Mgmt. (79)

Public Facilities Mgmt. (78)
Ecology & Environmental Mgmt. (77)

Water Conservancy Mgmt. (76)
Tech Promotion & Application (75)

Specialized Tech. Svcs. (74)
R&D (73)

Business Svcs. (72)
Leasing Svcs. (71)

Real Estate (70)
Other Financial Svcs. (69)

Insurance (68)
Capital Markets (67)
Financial Svcs. (66)

Software & IT Svcs. (65)
Internet Svcs. (64)

Telecom & Broadcasting Svcs. (63)
Catering (62)

Hotel Industry (61)
Postal Svcs. (60)

Logistics & Storage (59)
Multimodal Transport & Agencies (58)

Pipeline Transport (57)
Air Transport (56)

Waterway Transport (55)
Road Transport (54)

Railway Transport (53)
Retail Trade (52)

Wholesale Trade (51)
Building Completion & Finishing (50)

Construction Installation (49)
Civil Engineering (48)

Building Construction (47)
Water Production & Supply (46)

Gas Production & Supply (45)
Power Production & Supply (44)

Metal & Machinery Repair (43)
Waste Utilization (42)

Other Mfg. (41)
Measuring Instrument Mfg. (40)

Electronics Mfg. (39)
Electrical Machinery Mfg. (38)

Transport Equipment Mfg. (37)
Automotive Mfg. (36)

Special Purpose Machinery Mfg. (35)
Gen. Purpose Machinery Mfg. (34)

Metal Products Mfg. (33)
Non-ferrous Metal Mfg. (32)

Ferrous Metal Mfg. (31)
Non-metallic Mineral Mfg. (30)

Rubber & Plastic Mfg. (29)
Chemical Fiber Mfg. (28)

Pharma Mfg. (27)
Chemical Mfg. (26)

Petroleum Proc. & Coking (25)
Cultural & Edu. Product Mfg. (24)

Printing & Reprod. (23)
Paper Mfg. (22)

Furniture Mfg. (21)
Wood & Bamboo Product Mfg. (20)

Leather & Footwear Mfg. (19)
Textile Apparel & Finery Mfg. (18)

Textile Mfg. (17)
Tobacco Mfg. (16)

Beverage Mfg. (15)
Food Mfg. (14)

Agri Food Proc. (13)
Other Ore Mining (12)

Mining Support Svcs. (11)
Nonmetal Ore Mining & Proc. (10)
Non-ferrous Metal Ore Mining (9)

Ferrous Metal Ore Mining (8)
Petroleum & Nat. Gas Extraction (7)

Coal Mining & Washing (6)
Agri & Forestry Svcs. (5)

Fishing (4)
Animal Husbandry (3)

Forestry (2)
Agriculture (1)

1

1

1

2

5
4

28
4

1

2

6

13
2

1

1
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1

1
2

9
1

5
19

42
41

17
29

32
34

6
9

7
7
7

3
50

38
2

1
1

3

9

9
9

1
1

2
2

5

1
2

1

1

1

12 10 8 6 4 2 0
Share of invention patents between 2008 and 2018 (%)

6.77

3.16
2.61

1.08

0.37
0.35

1.00
0.20

0.33
0.09

0.44
10.81

1.05
0.44

10.87
5.32

3.31
1.02

0.75
10.65

6.32
3.77

0.33
0.42

3.35
1.92

0.58
1.47

6.29
0.30

1.31
0.36

1.03
0.26

1.51
0.32
0.21

1.40
0.03

1.23
1.41
1.24

0.17
0.13

0.29
0.05
0.05

0.21
0.05

0.86
0.70

0.40
0.69
0.76

Figure A.4: Number of demonstration enterprises and share of invention patents by industry

Notes: This figure summarizes the industry distribution of demonstration enterprises and the share of invention
patents by industry. The left panel displays the accumulated number of demonstration enterprises by industry af-
ter the certification in 2017, encompassing all treatment cohorts from 2012 to 2018. The right panel presents the
share of invention patent applications from 2008 to 2018 by industry, calculated by matching each patent’s IPC code
with its corresponding industry. Industries are classified according to the National Bureau of Statistics of China (GB/T
4754-2017), with industry codes indicated in parentheses.
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Mean percentile of demonstration enterprises 

among all listed firms in the same province and industry (%)

Asset

R&D expenditure

Utility patent

Invention patent

Va
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73.1

78.4

70.9

76.3

66.7

87.2

77.5

84.2

All demonstration enterprises
Demonstration enterprises in industries with no more than 3 demonstration enterprises

Figure A.5: The percentile of demonstrations firms in the local market

Notes: This figure presents the mean percentile of four variables—the number of invention patent applications, the
number of utility model patent applications, R&D expenditure, and asset size—for demonstration enterprises relative
to all listed firms in the corresponding industry and province at the end of the year prior to their application year.
The darker bar represents the mean for all demonstration enterprises, while the lighter bar represents the mean for
demonstration enterprises in industries with no more than three listed demonstration enterprises.
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Stacked DD coef. in the market with more dispersed productivity distribution: 0.023 (s.e. = 0.610)
Stacked DD coef. in the market with less dispersed productivity distribution: 0.221 (s.e. = 0.213)
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Relative period to treatment

Higher productivity disparities Lower productivity disparities

Figure A.6: Event study of government-provided R&D subsidies by TFP distribution

Notes: This figure presents the estimated coefficients obtained from the event study on government-provided R&D
subsidies of two groups of competitor firms: those operating in markets with the top 25% degree of productivity
dispersion, as measured by the Gini coefficient of the TFP distribution of listed firms, and those in markets with lower
levels of dispersion. The circles represent the point estimates, and the lines indicate the 95% confidence intervals.
The figure also reports the average treatment effects for the two treatment groups, calculated from the estimation of
Equation (12).
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Full sample # of invention patents in 2008 > 50

Figure A.7: Treatment effects on patent outputs by cohort

Notes: This figure presents the estimations of treatment effects on seven treatment cohorts from 2012 to 2018. The
estimation model is consistent with Column (3) of Table 2, with the only difference being that the estimation is con-
ducted separately for each stack. The dark-colored results are obtained using all city–industry pairs, while the light-
colored results are obtained using city–industry pairs with more than 50 invention patent applications in 2008. The
circles represent the point estimates of the coefficients, while the lines represent the 90% confidence intervals.
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Treatment effects = -0.002 × Number of treatment pairs - 0.015
(s.e. = 0.004)
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Figure A.8: Treatment effects and number of treatment pairs

Notes: This figure depicts the correlation between treatment effects and the number of treatment pairs across indus-
tries. The darker dashed line represents the fitted line.
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Table A.1: Summary of demonstration enterprises and re-evaluated enterprises by year

Re-evaluated enterprises

Year # of new certified Total # of failed Passing rate (%) Accumulation

2011 55 55
2012 76 131
2013 80 211
2014 72 55 0 100 283
2015 75 76 1 98.68 357
2016 69 80 1 98.75 425
2017 70 127 1 99.21 494

Mean 71 84.5 0.75 99.16

Notes: This table presents statistics on the number of certified demonstration enterprises, the number of re-evaluated
enterprises, the number of enterprises failing in the re-evaluation, the passing rate, and the cumulative number of
demonstration enterprises at the end of the year from 2011 to 2017. Since demonstration enterprises undergo re-
evaluation three years after their initial certification, the first round of re-evaluation occurred in 2014.
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Table A.2: Distribution of accumulated demonstration enterprises

Fraction of city–industry pairs for whose # of demonstration enterprises ≥ 1 (%)

Year # of DEs = 1 # of DEs = 2 # of DEs = 3 # of DEs = 4 # of DEs = 5 # of DEs = 6

2011 96.15 3.85 0 0 0 0
2012 95.90 2.46 1.64 0 0 0
2013 93.78 5.18 0.52 0.52 0 0
2014 91.24 7.17 1.20 0 0.40 0
2015 88.93 7.82 2.61 0.33 0.33 0
2016 86.20 10.70 1.97 0.85 0 0.28
2017 85.29 10.78 2.70 0.98 0 0.25

Notes: This table presents the distribution of the accumulated number of demonstration enterprises across city–
industry pairs. The second to seventh columns present the fraction of treatment city–industry pairs for which the
number of demonstration enterprises equals 1, 2, 3, 4, 5, and 6, respectively, during the period from 2011 to 2017.

A19



Table A.3: Policy effects on government-provided R&D subsidies

Logarithm of R&D subsidies

(1) (2)

Panel A. Demonstration enterprises
Treated 0.322* 0.474***

(0.198) (0.176)
# of clusters 204 204
# of observations 2,464 2,464

Panel B. Competitor enterprises
Treated 0.042 0.034

(0.145) (0.156)
# of clusters 383 383
# of observations 7,564 7,564

Enterprise FEs × Stack FEs Yes Yes
Year FEs × Stack FEs Yes Yes
Controls2008 × Year FEs × Stack FEs No Yes
Industry FEs × Year FEs × Stack FEs No Yes

Notes: This table presents the estimated effects of the NTIDE policy on the subsidies received by listed demonstration
enterprises (Panel A) and their competitor firms operating in the same city and industry (Panel B). Standard errors,
clustered at the firm level, are reported in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Table A.4: Policy effects on R&D expenditures

Logarithm of R&D expenditure

(1) (2)

Panel A. Demonstration enterprises
Treated 0.249** 0.300***

(0.115) (0.095)
# of clusters 199 199
# of observations 2,541 2,541

Panel B. Competitor enterprises
Treated -0.196** -0.133

(0.089) (0.097)
# of clusters 386 386
# of observations 8,450 8,450

Enterprise FEs × Stack FEs Yes Yes
Year FEs × Stack FEs Yes Yes
Controls2008 × Year FEs × Stack FEs No Yes
Industry FEs × Year FEs × Stack FEs No Yes

Notes: This table presents the estimated effects of the NTIDE policy on the R&D expenditures of listed demonstration
enterprises (Panel A) and their competitor firms operating in the same city and industry (Panel B). Standard errors,
clustered at the firm level, are reported in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Table A.5: Policy effects on R&D expenditures by TFP distribution

Logarithm of R&D expenditure

(1) (2)

Panel A. Larger productivity dispersion
Treated -0.602*** -0.392*

(0.147) (0.198)
# of clusters 71 71
# of observations 774 774

Panel B. Less productivity dispersion
Treated -0.070 -0.011

(0.110) (0.129)
# of clusters 222 222
# of observations 4,125 4,125

Enterprise FEs × Stack FEs Yes Yes
Year FEs × Stack FEs Yes Yes
Controls2008 × Year FEs × Stack FEs No Yes
Industry FEs × Year FEs × Stack FEs No Yes

Notes: This table presents the estimated effects of the NTIDE policy on the R&D expenditures of two groups of com-
petitor firms: those operating in markets with the top 25% degree of productivity dispersion, as measured by the Gini
coefficient of the TFP distribution of listed firms, and those in markets with lower levels of dispersion. Standard er-
rors, clustered at the firm level, are reported in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Table A.6: Policy effects on public firm entries

Logarithm of the number of public firm entries

(1) (2)

Treated -0.060 0.048
(0.120) (0.065)

City FEs × Industry FEs × Stack FEs Yes Yes
Year FEs × Stack FEs Yes No
Industry FEs × Year FEs × Stack FEs No Yes
City FEs × Year FEs × Stack FEs No Yes
# of clusters: city 336 335
# of clusters: industry 87 85
# of observations 308,962 308,204

Notes: This table reports the treatment effects of the NTIDE policy on the logarithm of annual public firm entries,
which includes state-owned and collectively owned firms. Given that the entry of public firms in China is often driven
by public objectives, it is anticipated that changes in innovation competition will have a less significant impact on
public firm entries. Consequently, the estimation in this table serves as a placebo test. Standard errors, two-way
clustered at the city and industry levels, are reported in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Table A.7: Using PPML to estimate the policy effects on firm entries

Number of firm entries

Private firm Foreign firm

(1) (2) (3) (4)

Treated -0.192*** -0.072* -0.321*** -0.147***
(0.066) (0.044) (0.102) (0.047)

City FEs × Industry FEs × Stack FEs Yes Yes Yes Yes
Year FEs × Stack FEs Yes No Yes No
Industry FEs × Year FEs × Stack FEs No Yes No Yes
City FEs × Year FEs × Stack FEs No Yes No Yes
# of clusters: city 337 337 335 333
# of clusters: industry 93 93 89 88
# of observations 1,996,910 1,996,175 800,210 788,598

Notes: This table reports the re-estimation results of the treatment effects of the NTIDE policy on the logarithm of
annual firm entries using the Poisson Pseudo Maximum Likelihood (PPML) estimator. The PPML estimator is used to
estimate the non-linear specification of the form Y = exp(Xβ+ε), thereby simultaneously accounting for the effects
on both the extensive and intensive margins of the dependent variable. Columns (1) and (2) present the effects on
private firms, while Columns (3) and (4) show the effects on foreign firms. Standard errors, two-way clustered at the
city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.8: Estimating local effects with the continuous treatment variable

Logarithm of the number of 3-year weighted invention patents

(1) (2) (3) (4)

# of demonstration enterprises -0.135*** -0.151*** -0.262*** -0.244***
(0.024) (0.027) (0.033) (0.068)

(# of demonstration enterprises)2 0.009 0.120*** 0.093
(0.015) (0.023) (0.084)

(# of demonstration enterprises)3 -0.019*** -0.009
(0.003) (0.029)

(# of demonstration enterprises)4 -0.001
(0.003)

City FEs × Ind. FEs × Stack FEs Yes Yes Yes Yes
Ind. FEs × Year FEs × Stack FEs Yes Yes Yes Yes
City FEs × Year FEs × Stack FEs Yes Yes Yes Yes
# of clusters: city 335 335 335 335
# of clusters: industry 54 54 54 54
# of observations 932,788 932,788 932,788 932,788

Notes: This table presents the estimation results using the number of demonstration enterprises as the core explana-
tory variable. Column (1) replicates the results from Column (4) of Table 2, while Columns (2)–(4) progressively in-
corporate second-, third-, and fourth-order polynomials into the specification.
***p < 0.01, **p < 0.05, *p < 0.1.
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Table A.9: Event study on the cohort with the first demonstration enterprise certified in 2019

Logarithm of the number of 3-year-citation weighted invention patents

All samples # of patents in 2008 > 50

1 {t = 2009}× 1
{
Treatment group

}
0.115 0.074

(0.120) (0.164)
1 {t = 2010}× 1

{
Treatment group

}
0.103 0.028

(0.163) (0.097)
1 {t = 2011}× 1

{
Treatment group

}
-0.030 0.040
(0.178) (0.119)

1 {t = 2012}× 1
{
Treatment group

}
0.234 0.003

(0.182) (0.094)
1 {t = 2013}× 1

{
Treatment group

}
0.218 0.071

(0.169) (0.097)
1 {t = 2014}× 1

{
Treatment group

}
0.079 0.031

(0.197) (0.132)
1 {t = 2015}× 1

{
Treatment group

}
0.189 0.077

(0.215) (0.110)
1 {t = 2016}× 1

{
Treatment group

}
-0.030 0.058
(0.237) (0.140)

1 {t = 2017}× 1
{
Treatment group

}
0.060 0.087

(0.219) (0.162)
1 {t = 2018}× 1

{
Treatment group

}
-0.008 0.070
(0.239) (0.157)

City FEs × Industry FEs Yes Yes
Industry FEs × Year FEs Yes Yes
City FEs × Year FEs Yes Yes
# of clusters: city 335 107
# of clusters: industry 54 49
# of observations 133,046 13,948

Notes: This table reports the result of the event study on city–industry pairs with the first demonstration enterprises
certified in 2019. Standard errors, two-way clustered at the city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.10: Policy effects on the annual number of utility patent applications

Logarithm of the number of utility patents

All samples # of patents in 2008 > 50

(1) (2) (3) (4)

Treated -0.108*** -0.049**
(0.032) (0.023)

# of demonstration enterprises -0.087*** -0.038**
(0.027) (0.016)

City FEs × Industry FEs × Stack FEs Yes Yes Yes Yes
Industry FEs × Year FEs × Stack FEs Yes Yes Yes Yes
City FEs × Year FEs × Stack FEs Yes Yes Yes Yes
# of clusters: city 336 336 110 110
# of clusters: industry 54 54 48 48
# of observations 1,092,447 1,092,447 98,705 98,705

Notes: This table reports the treatment effects of the NTIDE policy on the logarithm of annual utility patent applica-
tions. Standard errors, two-way clustered at the city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.11: The distribution of the number of invention patent applications in treatment and control
city–industry pairs

Fraction of samples (%)

# of invention patents in 2008 Treatment city–industry pairs control city–industry pairs

0 2.56 (2.56) 40.19 (40.19)
1–10 20.52 (23.08) 39.65 (79.84)
11–20 5.13 (28.21) 6.7 (86.54)
21–30 6.55 (34.76) 3.14 (89.68)
31–40 5.13 (39.89) 1.91 (91.59)
41–50 2.85 (42.74) 1.24 (92.83)
51–100 12.53 (55.27) 3.06 (95.89)
101–200 12.25 (67.52) 1.98 (97.87)
201–500 12.54 (80.06) 1.42 (99.29)
501–1000 9.68 (89.74) 0.43 (99.72)
> 1000 10.26 (100) 0.28 (100)

Notes: This table presents the distribution of the number of invention patent applications for treatment and control
city–industry pairs in the initial sample year (i.e., 2008). The values outside the parentheses denote the sample pro-
portions for each group, and the values inside the parentheses represent the cumulative proportions.
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Table A.12: Summary of the number of patent applications in different control groups

Observations Mean Std. Dev. Minimum Maximum

Panel A. The first sample year (2008)
Pure control group 2,268 1.484 3.780 0 58
Spatial-spillover control group 7,938 3.930 3.930 0 444
Inter-industry-spillover control group 1,776 21.018 65.538 0 1,119

Panel B. All sample years
Pure control group 24,948 10.437 40.203 0 1,454
Spatial-spillover control group 87,318 25.437 122.719 0 6,863
Inter-industry-spillover control group 19,536 91.470 266.263 0 5,544

Notes: This table presents descriptive statistics on the number of invention patent applications for different types of
control groups, categorized based on spillover effects. Panel A reports the statistics for the year 2008, while Panel B
covers the full sample period from 2008 to 2018. The pure control group consists of city–industry pairs that differ from
both the industries and cities of all demonstration enterprises. The inter-industry-spillover control group consists
of city–industry pairs where demonstration enterprises are present in the city but not in the industry. The spatial-
spillover control group consists of city–industry pairs where demonstration enterprises are present in the industry
but not in the city.
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Table A.13: Stacked DD estimations for inter-industry spillover effects

Logarithm of the number of 3-year-citation weighted invention patents

Restrictions on # of invention patents in 2008

> 0 > 1 > 5

(1) (2) (3) (4)

Panel A. Without linear time trend
Treated 0.196*** 0.204*** 0.215** 0.158**

(0.052) (0.056) (0.071) (0.063)
Linear time trend No No No No

Panel B. Controlling for linear time trend
Treated -0.017 0.006 0.039 -0.003

(0.041) (0.038) (0.042) (0.040)
Linear time trend Yes Yes Yes Yes

City FEs × Ind. FEs × Stack FEs Yes Yes Yes Yes
Ind. FEs × Year FEs × Stack FEs Yes Yes Yes Yes
City FEs × Year FEs × Stack FEs Yes Yes Yes Yes
# of clusters: city 332 310 263 171
# of clusters: industry 12 12 12 12
# of observations 99,421 64,476 44,754 19,996

Notes: This table presents the estimation results for inter-industry spillover effects by comparing the inter-industry
spillover control group with the pure control group. Panel A reports estimates without controlling for the linear time
trend, while Panel B reports estimates with the inclusion of the linear time trend control. Columns (2) to (4) present
the estimated effects using city–industry pairs with more than 0, 1, and 5 patent applications in the sample year (i.e.,
2008), respectively. Standard errors, clustered two-way at the city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.14: Stacked DD estimations for spatial spillover effects

Logarithm of the number of 3-year-citation weighted invention patents

Restrictions on # of invention patents in 2008

> 0 > 1 > 5

(1) (2) (3) (4)

Panel A. Without linear time trend
Treated 0.052 0.041 0.028 0.007

(0.095) (0.093) (0.099) (0.071)
Linear time trend No No No No

Panel B. Controlling for linear time trend
Treated 0.022 0.027 0.016 0.054

(0.053) (0.063) (0.069) (0.064)
Linear time trend Yes Yes Yes Yes

City FEs × Ind. FEs × Stack FEs Yes Yes Yes Yes
Ind. FEs × Year FEs × Stack FEs Yes Yes Yes Yes
City FEs × Year FEs × Stack FEs Yes Yes Yes Yes
# of clusters: city 187 174 167 127
# of clusters: industry 54 54 54 48
# of observations 135,386 86,802 59,845 24,867

Notes: This table presents the estimation results for spatial spillover effects by comparing the spatial spillover control
group with the pure control group. Panel A reports estimates without controlling for the linear time trend, while Panel
B reports estimates with the inclusion of the linear time trend control. Columns (2) to (4) present the estimated effects
using city–industry pairs with more than 0, 1, and 5 patent applications in the sample year (i.e., 2008), respectively.
Standard errors, clustered two-way at the city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.15: Stacked DD estimations for spatial spillover effects using adjacent cities as the treatment
group

Logarithm of the number of 3-year-citation weighted invention patents

Restrictions on # of invention patents in 2008

> 0 > 20 > 40

(1) (2) (3) (4)

Treated 0.000 -0.007 -0.029 -0.015
(0.015) (0.015) (0.022) (0.018)

City FEs × Ind. FEs × Stack FEs Yes Yes Yes Yes
Ind. FEs × Year FEs × Stack FEs Yes Yes Yes Yes
City FEs × Year FEs × Stack FEs Yes Yes Yes Yes
# of clusters: city 335 320 176 124
# of clusters: industry 54 54 54 50
# of observations 849,005 653,703 156,170 95,381

Notes: This table reports the estimation results for spatial spillover effects by comparing cities adjacent to those with
demonstration enterprises and other cities. Columns (2) to (4) present the estimated effects using city–industry pairs
with more than 0, 20, and 40 patent applications in the sample year (i.e., 2008), respectively. Standard errors, clustered
two-way at the city and industry levels, are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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